A universal inverse design methodology for microfluidic mixers.

Naiyin Zhang, Taotao Sun, Zhenya Liu, Yidan Zhang, Ying Xu, Junchao Wang
Author Information
  1. Naiyin Zhang: School of Automation, Hangzhou Dianzi University, Hangzhou, China. ORCID
  2. Taotao Sun: School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou, China.
  3. Zhenya Liu: School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou, China.
  4. Yidan Zhang: School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou, China. ORCID
  5. Ying Xu: School of Automation, Hangzhou Dianzi University, Hangzhou, China. ORCID
  6. Junchao Wang: School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou, China. ORCID

Abstract

The intelligent design of microfluidic mixers encompasses both the automation of predicting fluid performance and the structural design of mixers. This article delves into the technical trajectory of computer-aided design for micromixers, leveraging artificial intelligence algorithms. We propose an automated micromixer design methodology rooted in cost-effective artificial neural network (ANN) models paired with inverse design algorithms. Initially, we introduce two inverse design methods for micromixers: one that combines ANN with multi-objective genetic algorithms, and another that fuses ANN with particle swarm optimization algorithms. Subsequently, using two benchmark micromixers as case studies, we demonstrate the automatic derivation of micromixer structural parameters. Finally, we automatically design and optimize 50 sets of micromixer structures using the proposed algorithms. The design accuracy is further enhanced by analyzing the inverse design algorithm from a statistical standpoint.

References

  1. Lab Chip. 2004 Jun;4(3):214-9 [PMID: 15159781]
  2. Lab Chip. 2021 Jun 29;21(13):2544-2556 [PMID: 33998624]
  3. Biotechnol J. 2013 Nov;8(11):1258-66 [PMID: 24038956]
  4. Nat Commun. 2022 Feb 21;13(1):973 [PMID: 35190542]
  5. Adv Healthc Mater. 2015 Jul 15;4(10):1426-50 [PMID: 25820344]
  6. Rev Sci Instrum. 1972 Mar;43(3):404-9 [PMID: 5013444]
  7. Biomicrofluidics. 2009 Jun 30;3(2):22413 [PMID: 19693348]
  8. Sci Adv. 2020 Jan 03;6(1):eaax9324 [PMID: 31922005]
  9. Science. 2015 Apr 3;348(6230):74-80 [PMID: 25838376]
  10. Nat Med. 2016 Jan;22(1):26-36 [PMID: 26735408]
  11. Soft Matter. 2019 Feb 6;15(6):1361-1372 [PMID: 30570628]
  12. Micromachines (Basel). 2022 Nov 28;13(12): [PMID: 36557399]
  13. Med Biol Eng Comput. 2022 Mar;60(3):663-681 [PMID: 35028863]
  14. N Engl J Med. 2004 Aug 19;351(8):781-91 [PMID: 15317891]
  15. Micromachines (Basel). 2017 Aug 11;8(8): [PMID: 30400438]
  16. Drug Metab Pharmacokinet. 2018 Feb;33(1):43-48 [PMID: 29175062]
  17. ACS Nano. 2017 Jul 25;11(7):6691-6702 [PMID: 28614653]
  18. Lab Chip. 2019 Nov 7;19(21):3618-3627 [PMID: 31576868]
  19. Lab Chip. 2021 Jan 21;21(2):296-309 [PMID: 33325947]
  20. Lab Chip. 2015 Mar 7;15(5):1230-49 [PMID: 25598308]
  21. Biomicrofluidics. 2019 Dec 11;13(6):064125 [PMID: 31832123]
  22. Lab Chip. 2020 Jun 30;20(13):2372-2382 [PMID: 32500123]
  23. Science. 2019 Mar 22;363(6433):1333-1338 [PMID: 30898930]
  24. Nat Biomed Eng. 2019 Jun;3(6):438-451 [PMID: 31123323]
  25. Chem Soc Rev. 2018 Jul 30;47(15):5646-5683 [PMID: 29999050]
  26. Development. 2000 Dec;127(24):5253-63 [PMID: 11076748]
  27. Anal Chem. 2001 May 1;73(9):1942-7 [PMID: 11354474]
  28. Micromachines (Basel). 2022 Oct 24;13(11): [PMID: 36363832]
  29. Nano Lett. 2018 Oct 10;18(10):6570-6576 [PMID: 30207735]
  30. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7744-7749 [PMID: 30926671]
  31. Sci Adv. 2020 Mar 20;6(12):eaay7629 [PMID: 32440533]
  32. Lab Chip. 2016 Oct 18;16(21):4212-4219 [PMID: 27713978]
  33. Nat Commun. 2021 Jan 4;12(1):25 [PMID: 33397940]
  34. Lab Chip. 2022 Aug 9;22(16):2925-2937 [PMID: 35904162]
  35. Nature. 2014 Mar 13;507(7491):181-9 [PMID: 24622198]

Word Cloud

Created with Highcharts 10.0.0designalgorithmsinversemixersmicromixerANNmicrofluidicstructuralmicromixersartificialmethodologytwousingintelligentencompassesautomationpredictingfluidperformancearticledelvestechnicaltrajectorycomputer-aidedleveragingintelligenceproposeautomatedrootedcost-effectiveneuralnetworkmodelspairedInitiallyintroducemethodsmicromixers:onecombinesmulti-objectivegeneticanotherfusesparticleswarmoptimizationSubsequentlybenchmarkcasestudiesdemonstrateautomaticderivationparametersFinallyautomaticallyoptimize50setsstructuresproposedaccuracyenhancedanalyzingalgorithmstatisticalstandpointuniversal

Similar Articles

Cited By (2)