N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth.

Xueting Li, Huashan Tang, Ting Xu, Pengfei Wang, Fangfang Ma, Haifang Wei, Zi Fang, Xiaoyan Wu, Yanan Wang, Yongbiao Xue, Biyao Zhang
Author Information
  1. Xueting Li: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  2. Huashan Tang: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  3. Ting Xu: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  4. Pengfei Wang: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  5. Fangfang Ma: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  6. Haifang Wei: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  7. Zi Fang: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  8. Xiaoyan Wu: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  9. Yanan Wang: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  10. Yongbiao Xue: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  11. Biyao Zhang: National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. ORCID

Abstract

Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (HO) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.

Keywords

References

  1. Aksnes H, Drazic A, Marie M, Arnesen T. 2016. First things first: vital protein marks by N���terminal acetyltransferases. Trends in Biochemical Sciences 41: 746���760.
  2. Aksnes H, Hole K, Arnesen T. 2015. Molecular, cellular, and physiological significance of N���terminal acetylation. International Review of Cell and Molecular Biology 316: 267���305.
  3. Armbruster L, Linster E, Boyer JB, Brunje A, Eirich J, Stephan I, Bienvenut WV, Weidenhausen J, Meinnel T, Hell R et al. 2020. Naa50 is an enzymatically active N(alpha)���acetyltransferase that is crucial for development and regulation of stress responses. Plant Physiology 183: 1502���1516.
  4. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C. 2012. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N���alpha���acetylation features. Molecular & Cellular Proteomics 11: M111.015131.
  5. Capovilla G, Pajoro A, Immink RGH, Schmid M. 2015. Role of alternative pre���mRNA splicing in temperature signaling. Current Opinion in Plant Biology 27: 97���103.
  6. Chen TT, Chen X, Zhang SS, Zhu JW, Tang BX, Wang AK, Dong LL, Zhang ZW, Yu CX, Sun YL et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics 19: 578���583.
  7. Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA. 2020. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants 6: 522���532.
  8. Cohen���Peer R, Schuster S, Meiri D, Breiman A, Avni A. 2010. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Molecular Biology 74: 33���45.
  9. Cui LL, Lu YS, Li Y, Yang C, Peng XX. 2016. Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Frontiers in Plant Science 7: 1165.
  10. Delker C, Quint M, Wigge PA. 2022. Recent advances in understanding thermomorphogenesis signaling. Current Opinion in Plant Biology 68: 102231.
  11. Ding YF, Zhou M, Wang K, Qu AL, Hu SS, Jiang Q, Yi KK, Wang FJ, Cai C, Zhu C et al. 2023. Rice DST transcription factor negatively regulates heat tolerance through ROS���mediated stomatal movement and heat���responsive gene expression. Frontiers in Plant Science 14: 1068296.
  12. Evjenth R, Hole K, Karlsen OA, Ziegler M, Arnesen T, Lillehaug JR. 2009. Human Naa50p (Nat5/San) displays both protein N���alpha��� and N epsilon���acetyltransferase activity. Journal of Biological Chemistry 284: 31122���31129.
  13. Fang YJ, Liao KF, Du H, Xu Y, Song HZ, Li XH, Xiong LZ. 2015. A stress���responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Environmental and Experimental Botany 66: 6803���6817.
  14. Gong XD, Huang YQ, Liang Y, Yuan YD, Liu YH, Han TW, Li SJ, Gao HB, Lv B, Huang XH et al. 2022. OsHYPK���mediated protein N���terminal acetylation coordinates plant development and abiotic stress responses in rice. Molecular Plant 15: 740���754.
  15. Han D, Yu Z, Lai J, Yang C. 2022. Post���translational modification: a strategic response to high temperature in plants. aBIOTECH 3: 49���64.
  16. Hoshiyasu S, Kohzuma K, Yoshida K, Fujiwara M, Fukao Y, Yokota A, Akashi K. 2013. Potential involvement of N���terminal acetylation in the quantitative regulation of the epsilon subunit of chloroplast ATP synthase under drought stress. Bioscience, Biotechnology, and Biochemistry 77: 998���1007.
  17. Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y. 2013. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G �� subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genetics 9: e1003391.
  18. Huber M, Bienvenut WV, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I et al. 2020. NatB���mediated N���terminal acetylation affects growth and biotic stress responses. Plant Physiology 182: 792���806.
  19. Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX. 2022. TT2 controls rice thermotolerance through SCT1���dependent alteration of wax biosynthesis. Nature Plants 8: 53���67.
  20. Kerbler SM, Philip AW. 2023. Temperature sensing in plants. Annual Review of Plant Biology 74: 20.21���20.26.
  21. Kim JH, Lee HJ, Jung JH, Lee S, Park CM. 2017. HOS1 facilitates the phytochrome B���mediated inhibition of PIF4 function during hypocotyl growth in Arabidopsis. Molecular Plant 10: 274���284.
  22. Legris M, Nieto C, Sellaro R, Prat S, Casal JJ. 2017. Perception and signalling of light and temperature cues in plants. The Plant Journal 90: 683���697.
  23. Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X. 2021. Glycolate oxidase���dependent H2O2 production regulates IAA biosynthesis in rice. BMC Plant Biology 21: 326.
  24. Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC et al. 2015. Natural alleles of a proteasome alpha2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics 47: 827���833.
  25. Li YR, Williams B, Dickman M. 2017. Arabidopsis B���cell lymphoma2 (Bcl���2)���associated athanogene 7 (BAG7)���mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. New Phytologist 214: 695���705.
  26. Lin J, Zhu Z. 2021. Plant responses to high temperature: a view from pre���mRNA alternative splicing. Plant Molecular Biology 105: 575���583.
  27. Linster E, Stephan I, Bienvenut WV, Maple���Grodem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Moller SG, Meinnel T et al. 2015. Downregulation of N���terminal acetylation triggers ABA���mediated drought responses in Arabidopsis. Nature Communications 6: 7640.
  28. Liu H, Ding YD, Zhou YQ, Jin WQ, Xie KB, Chen LL. 2017. Crispr���P 2.0: an improved CRISPR���Cas9 tool for genome editing in plants. Molecular Plant 10: 530���532.
  29. Martin RE, Postiglione AE, Muday GK. 2022. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. Current Opinion in Plant Biology 69: 102293.
  30. Miklankova P, Linster E, Boyer JB, Weidenhausen J, Mueller J, Armbruster L, Lapouge K, De La Torre C, Bienvenut W, Sticht C et al. 2022. HYPK promotes the activity of the n���alpha���acetyltransferase a complex to determine proteostasis of nonac���x���2/n���degron���containing proteins. Science Advances 8: eabn6153.
  31. Morgan B, Sobotta MC, Dick TP. 2011. Measuring E(GSH) and H2O2 with roGFP2���based redox probes. Free Radical Biology and Medicine 51: 1943���1951.
  32. Nguyen KT, Lee CS, Mun SH, Truong NT, Park SK, Hwang CS. 2019. N���terminal acetylation and the N���end rule pathway control degradation of the lipid droplet protein PLIN2. Journal of Biological Chemistry 294: 379���388.
  33. Park YJ, Lee HJ, Ha JH, Kim JY, Park CM. 2017. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytologist 215: 269���280.
  34. Pozoga M, Armbruster L, Wirtz M. 2022. From nucleus to membrane: a subcellular map of the N���acetylation machinery in plants. International Journal of Molecular Sciences 23: 14492.
  35. Smirnoff N, Arnaud D. 2019. Hydrogen peroxide metabolism and functions in plants. New Phytologist 221: 1197���1214.
  36. Song ZT, Chen XJ, Luo L, Yu FF, Liu JX, Han JJ. 2022. UBA domain protein SUF1 interacts with NatA���complex subunit NAA15 to regulate thermotolerance in Arabidopsis. Journal of Integrative Plant Biology 64: 1297���1302.
  37. Starheim KK, Gevaert K, Arnesen T. 2012. Protein N���terminal acetyltransferases: when the start matters. Trends in Biochemical Sciences 37: 152���161.
  38. Szechynska���Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpinski S. 2022. To be or not to be? Are reactive oxygen species, antioxidants, and stress signalling universal determinants of life or death? Cells 11: 4105.
  39. Vu LD, Gevaert K, De Smet I. 2019. Feeling the heat: searching for plant thermosensors. Trends in Plant Science 24: 210���219.
  40. Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y. 2016. Nucleolar DEAD���box RNA helicase TOGR1 regulates thermotolerant growth as a pre���rRNA chaperone in rice. PLoS Genetics 12: e1005844.
  41. Wang FG, Liu YY, Shi YQ, Han DL, Wu YY, Ye WX, Yang HL, Li GW, Cui F, Wan SB et al. 2020. Sumoylation stabilizes the transcription factor DREB2a to improve plant thermotolerance. Plant Physiology 183: 41���50.
  42. Wang J, Song J, Clark G, Roux SJ. 2018. ANN1 and ANN2 function in post���phloem sugar transport in root tips to affect primary root growth. Plant Physiology 178: 390���401.
  43. Warnhoff K, Murphy JT, Kumar S, Schneider DL, Peterson M, Hsu S, Guthrie J, Robertson JD, Kornfeld K. 2014. The DAF���16 FOXO transcription factor regulates NATC���1 to modulate stress resistance in Caenorhabditis Elegans, linking INSULIN/IGF���1 signaling to protein N���terminal acetylation. PLoS Genetics 10: e1004703.
  44. Xu F, Huang Y, Li L, Gannon P, Linster E, Huber M, Kapos P, Bienvenut W, Polevoda B, Meinnel T et al. 2015. Two N���terminal acetyltransferases antagonistically regulate the stability of a nod���like receptor in Arabidopsis. Plant Cell 27: 1547���1562.
  45. Xue YB, Bao YM, Zhang Z, Zhao WM, Xiao JF, He SM, Zhang GQ, Li YX, Zhao GP, Chen RS et al. 2022. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research 50: D27���D38.
  46. Zhang B, Holmlund M, Lorrain S, Norberg M, Bako L, Fankhauser C, Nilsson O. 2017. BLADE���ON���PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6: e26759.
  47. Zhang BY, Wu SH, Zhang YE, Xu T, Guo FF, Tang HS, Li X, Wang PF, Qian WF, Xue YB. 2016. A high temperature���dependent mitochondrial lipase EXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa l.). PLoS Genetics 12: e1006152.

Grants

  1. 32172011/National Natural Science Foundation of China
  2. XDA24010302/Strategic Priority Research Program of the Chinese Academy of Sciences

MeSH Term

Oryza
Acetylation
Reactive Oxygen Species
Homeostasis
Plant Proteins
Temperature
Glycolates
Hydrogen Peroxide
Proteolysis
Gene Expression Regulation, Plant
Alcohol Oxidoreductases

Chemicals

Reactive Oxygen Species
Plant Proteins
Glycolates
glycolic acid
Hydrogen Peroxide
glycollate oxidase
Alcohol Oxidoreductases

Word Cloud

Created with Highcharts 10.0.0thermoresponsiveOsNAA15growthriceN-terminalROStwo1glycolateacetylationproductionsubunitNatA2viaacetylomeplanttemperaturesGLO1/5glycolate-mediatedhomeostasisClimatewarmingposessignificantthreatglobalcropfoodsecurityHoweverunderstandingmolecularmechanismsgoverningdevelopmentcropsremainslimitedreportauxiliaryacetyltransferaseprerequisiteproducesisoformstemperature-dependentalternativesplicingAmonglikelyformstablefunctionalcomplexpotentialcatalyticOsNAA10leadingIntriguinglypromoteselevatedexhibitsinhibitoryeffectidentifiedoxidasesmajorsubstratesenzymesinvolvedhydrogenperoxideHObiosynthesisoxidationN-terminallyacetylatedundergodegradationubiquitin-proteasomesystemleadsreducedreactiveoxygenspeciestherebypromotingparticularlyhighambientConclusivelyfindingshighlightpivotalroleorchestratingfacilitateorchestratespromoteN���terminaloxidasetemperature

Similar Articles

Cited By (1)