Epidemiology of Methicillin-resistant Colonization in Neonates within Neonatal Intensive Care Units: A Systematic Review and Meta-analysis.

Seraphine Nkie Esemu, Arnol Bowo-Ngandji, Roland Ndip Ndip, Jane-Francis Tatah Kihla Akoachere, Nene Kaah Keneh, Jean Thierry Ebogo-Belobo, Cyprien Kengne-Nd��, Donatien Serge Mbaga, Nicholas Tendongfor, Hortense Kamga Gonsu, Jean Paul Assam Assam, Lucy Mande Ndip
Author Information
  1. Seraphine Nkie Esemu: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  2. Arnol Bowo-Ngandji: Department of Microbiology, The University of Yaounde I, Yaound��, Cameroon.
  3. Roland Ndip Ndip: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  4. Jane-Francis Tatah Kihla Akoachere: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  5. Nene Kaah Keneh: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  6. Jean Thierry Ebogo-Belobo: Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaound��, Cameroon.
  7. Cyprien Kengne-Nd��: Faculty of Medicine and Biomedical Sciences, Epidemiological Surveillance, Evaluation and Research Unit, National Aids Control Committee, Douala, Cameroon.
  8. Donatien Serge Mbaga: Department of Microbiology, The University of Yaounde I, Yaound��, Cameroon.
  9. Nicholas Tendongfor: Department of Public Health and Hygiene, University of Buea, Buea, Cameroon.
  10. Hortense Kamga Gonsu: Center for Research in Health and Priority Pathologies, Faculty of Medicine and Biomedical Sciences, The University of Yaounde I, Yaound��, Cameroon.
  11. Jean Paul Assam Assam: Department of Microbiology, The University of Yaounde I, Yaound��, Cameroon.
  12. Lucy Mande Ndip: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.

Abstract

Introduction: Methicillin-resistant (MRSA) Colonization in neonatal intensive care units (NICUs) is a significant global health concern, leading to severe infections, extended hospital stays, and substantial economic burdens on health-care systems. To develop effective infection control strategies, we need to fill existing gaps in our understanding of MRSA epidemiology in neonates. The aim of this systematic review is to provide an extensive analysis of the proportion of MRSA colonizations in NICUs.
Methods: We used a comprehensive search strategy across databases such as Medline, Embase, Global Health, Web of Science, and Global Index Medicus, in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles were independently reviewed and selected based on a variety of criteria, including the inclusion of neonates tested for MRSA Colonization during NICU stay, and the reporting of community-acquired and hospital-acquired MRSA (CA-MRSA and HA-MRSA) incidence levels. Exclusion criteria included studies outside NICUs, those focused on specific MRSA outbreaks or clinical infections, review studies, and those lacking abstracts or full texts. Five authors independently extracted data, which was summarized and checked for quality. Statistical analysis included a random-effects model to compute pooled proportions, stratification by geographical location, evaluation of heterogeneity, and examination of publication bias.
Results: Our systematic review evaluated 62 studies out of an initial 536 records identified. The majority of the selected studies were conducted in high-income countries, primarily in the United States. From these studies, we estimated a cumulative incidence rate of 7.2% for MRSA Colonization in NICUs. When the source of MRSA was considered, CA-MRSA incidence was 2.7%, while HA-MRSA incidence was notably higher at 11%. A subgroup analysis showed geographical differences in the cumulative incidence of MRSA Colonization in NICUs, with Brazil having the lowest incidence and Taiwan the highest. The proportion of HA-MRSA Colonization also varied significantly by country, with South Korea reporting higher incidence rates than the United States. However, the differences in CA-MRSA Colonization rates between countries and WHO regions were not statistically significant.
Conclusions: Our systematic review found a cumulative incidence of 7.2% for MRSA Colonization in NICUs, with HA-MRSA (11%) being more prevalent than CA-MRSA (2.7%). Regional variations were detected, with Taiwan exhibiting the highest cumulative incidence and South Korea having both the highest CA-MRSA and HA-MRSA. These findings underline the substantial public health impact of MRSA, especially in NICUs, necessitating context-specific prevention and control strategies. Future research should strive to address these regional disparities and aspire to attain a more globally representative understanding of MRSA Colonization rates.

Keywords

References

  1. J Hosp Infect. 2000 Oct;46(2):123-9 [PMID: 11049705]
  2. J Hosp Infect. 2006 May;63 Suppl 1:S1-44 [PMID: 16581155]
  3. Res Synth Methods. 2010 Apr;1(2):97-111 [PMID: 26061376]
  4. J Pediatric Infect Dis Soc. 2021 Aug 17;10(7):766-773 [PMID: 34129043]
  5. J Infect Dev Ctries. 2020 Jul 31;14(7):765-771 [PMID: 32794468]
  6. Pediatr Surg Int. 2018 Nov;34(11):1209-1214 [PMID: 30128702]
  7. Int J Hyg Environ Health. 2011 Mar;214(2):167-71 [PMID: 21316303]
  8. JAMA. 2020 Jan 28;323(4):319-328 [PMID: 31886828]
  9. Control Clin Trials. 1986 Sep;7(3):177-88 [PMID: 3802833]
  10. Infect Control Hosp Epidemiol. 2014 Apr;35(4):412-8 [PMID: 24602947]
  11. Clin Infect Dis. 2006 Jan 15;42 Suppl 2:S82-9 [PMID: 16355321]
  12. Am J Obstet Gynecol. 2012 Apr;206(4):329.e1-5 [PMID: 22464075]
  13. Res Synth Methods. 2016 Mar;7(1):55-79 [PMID: 26332144]
  14. Ann Clin Microbiol Antimicrob. 2019 Mar 20;18(1):12 [PMID: 30894188]
  15. Am J Infect Control. 2009 May;37(4):335-7 [PMID: 19181424]
  16. J Hosp Infect. 2017 Jan;95(1):91-97 [PMID: 27887754]
  17. Am J Perinatol. 2012 Jun;29(6):401-8 [PMID: 22399220]
  18. J Hosp Infect. 2018 Nov;100(3):329-336 [PMID: 30009868]
  19. Am J Infect Control. 2007 Dec;35(10 Suppl 2):S165-93 [PMID: 18068814]
  20. Am J Infect Control. 2019 Nov;47(11):1336-1339 [PMID: 31253554]
  21. J Clin Microbiol. 2015 Aug;53(8):2492-501 [PMID: 26019206]
  22. BMC Pediatr. 2014 May 09;14:121 [PMID: 24886471]
  23. Clin Infect Dis. 2005 Jun 15;40(12):1785-91 [PMID: 15909267]
  24. Clin Infect Dis. 2014 Nov 1;59(9):1302-11 [PMID: 25031291]
  25. J Infect Chemother. 2022 Feb;28(2):176-180 [PMID: 34785117]
  26. Arch Pediatr Adolesc Med. 1994 Oct;148(10):1106-7 [PMID: 7921108]
  27. J Clin Epidemiol. 2012 Sep;65(9):934-9 [PMID: 22742910]
  28. Am J Infect Control. 2009 Sep;37(7):580-6 [PMID: 19535174]
  29. Infect Control Hosp Epidemiol. 2009 Sep;30(9):854-60 [PMID: 19637960]
  30. Am J Perinatol. 2015 May;32(6):531-6 [PMID: 25545444]
  31. Early Hum Dev. 2013 Sep;89(9):661-5 [PMID: 23707691]
  32. J Neonatal Perinatal Med. 2017;10(4):439-444 [PMID: 29286935]
  33. Pediatrics. 2008 Nov;122(5):1039-46 [PMID: 18977985]
  34. Clin Infect Dis. 2001 May 15;32(10):1399-407 [PMID: 11317239]
  35. Clin Infect Dis. 2014 Jan;58 Suppl 1:S10-9 [PMID: 24343827]
  36. Am J Infect Control. 2010 Sep;38(7):529-34 [PMID: 20371134]
  37. Infect Control Hosp Epidemiol. 2023 Mar;44(3):447-452 [PMID: 35450544]
  38. Am J Infect Control. 2021 Nov;49(11):1408-1413 [PMID: 33940064]
  39. Pediatr Infect Dis J. 2013 Dec;32(12):e443-50 [PMID: 23811747]
  40. J Infect Public Health. 2023 Feb;16(2):266-271 [PMID: 36621204]
  41. J Pediatr. 2021 Sep;236:70-77 [PMID: 34023342]
  42. PLoS One. 2011;6(8):e23001 [PMID: 21857979]
  43. PLoS Med. 2021 Mar 29;18(3):e1003583 [PMID: 33780438]
  44. Infect Control Hosp Epidemiol. 2013 Oct;34(10):1077-86 [PMID: 24018925]
  45. J Perinatol. 2021 Jun;41(6):1285-1292 [PMID: 33649431]
  46. BMJ. 1997 Sep 13;315(7109):629-34 [PMID: 9310563]
  47. Pediatrics. 2011 Nov;128(5):e1173-80 [PMID: 22007011]
  48. Pediatrics. 2009 May;123(5):e790-6 [PMID: 19403471]
  49. Am J Infect Control. 2010 Oct;38(8):660-3 [PMID: 20413184]
  50. PLoS One. 2020 Feb 13;15(2):e0211845 [PMID: 32053585]
  51. Clin Perinatol. 2008 Mar;35(1):223-49, x [PMID: 18280884]
  52. Neonatology. 2008;93(3):158-61 [PMID: 17878742]
  53. Infect Control Hosp Epidemiol. 2010 Feb;31(2):177-82 [PMID: 20001732]
  54. Am J Infect Control. 2017 Dec 1;45(12):1388-1393 [PMID: 29195583]
  55. Pediatr Infect Dis J. 2020 Nov;39(11):1045-1049 [PMID: 33075218]
  56. Antimicrob Resist Infect Control. 2014 Apr 23;3:14 [PMID: 24808943]
  57. Pediatr Infect Dis J. 2015 Mar;34(3):241-5 [PMID: 25742074]
  58. Infect Control Hosp Epidemiol. 2011 Apr;32(4):398-400 [PMID: 21460494]
  59. Infect Control Hosp Epidemiol. 2015 Feb;36(2):232-4 [PMID: 25633010]
  60. Pediatr Int. 2021 Jan;63(1):117-119 [PMID: 33372340]
  61. Arch Pediatr. 2004 Nov;11(11):1314-8 [PMID: 15519828]
  62. Clin Microbiol Infect. 2016 Jul;22(7):645.e1-8 [PMID: 27126609]
  63. JAMA. 2004 Nov 17;292(19):2357-65 [PMID: 15547163]
  64. Mikrobiyol Bul. 2010 Jul;44(3):529-31 [PMID: 21064005]
  65. Am J Infect Control. 2011 Feb;39(1):35-41 [PMID: 21281885]
  66. Expert Rev Anti Infect Ther. 2013 May;11(5):499-509 [PMID: 23627856]
  67. Pediatr Int. 2008 Dec;50(6):810-5 [PMID: 19067897]
  68. Pediatrics. 2014 Apr;133(4):e1015-23 [PMID: 24616358]
  69. Am J Perinatol. 2017 Jan;34(1):80-87 [PMID: 27240094]
  70. J Hosp Infect. 2013 May;84(1):66-70 [PMID: 23561425]
  71. Semin Perinatol. 2012 Dec;36(6):424-30 [PMID: 23177801]
  72. Neonatology. 2007;91(4):241-7 [PMID: 17568155]
  73. World J Pediatr. 2017 Jun;13(3):217-221 [PMID: 28101771]
  74. Braz J Infect Dis. 2014 Jan-Feb;18(1):42-7 [PMID: 24076111]
  75. Acta Paediatr. 2010 Nov;99(11):1691-4 [PMID: 20528798]
  76. JAMA Netw Open. 2021 Sep 1;4(9):e2124938 [PMID: 34515783]
  77. PLoS One. 2016 Oct 12;11(10):e0164397 [PMID: 27732618]
  78. Clin Infect Dis. 2006 Feb 1;42(3):389-91 [PMID: 16392087]
  79. PLoS One. 2014 Feb 05;9(2):e87760 [PMID: 24505312]
  80. J Pediatric Infect Dis Soc. 2016 Dec;5(4):409-416 [PMID: 26407280]
  81. Am J Infect Control. 2015 May 1;43(5):476-81 [PMID: 25726131]
  82. J Antimicrob Chemother. 2014 Aug;69(8):2230-7 [PMID: 24729603]

Word Cloud

Created with Highcharts 10.0.0MRSAincidencecolonizationNICUsCA-MRSAHA-MRSAstudiesreviewcumulativeneonatessystematicanalysishighestratesMethicillin-resistantneonatalintensivecareunitssignificanthealthinfectionssubstantialcontrolstrategiesunderstandingepidemiologyproportionGlobalSystematicindependentlyselectedcriteriareportingincludedgeographicalcountriesUnitedStates72%27%higher11%differencesTaiwanSouthKoreaColonizationIntroduction:globalconcernleadingsevereextendedhospitalstayseconomicburdenshealth-caresystemsdevelopeffectiveinfectionneedfillexistinggapsaimprovideextensivecolonizationsMethods:usedcomprehensivesearchstrategyacrossdatabasesMedlineEmbaseHealthWebScienceIndexMedicusaccordancePreferredReportingItemsReviewsMeta-AnalysesguidelinesArticlesreviewedbasedvarietyincludinginclusiontestedNICUstaycommunity-acquiredhospital-acquiredlevelsExclusionoutsidefocusedspecificoutbreaksclinicallackingabstractsfulltextsFiveauthorsextracteddatasummarizedcheckedqualityStatisticalrandom-effectsmodelcomputepooledproportionsstratificationlocationevaluationheterogeneityexaminationpublicationbiasResults:evaluated62initial536recordsidentifiedmajorityconductedhigh-incomeprimarilyestimatedratesourceconsiderednotablysubgroupshowedBrazillowestalsovariedsignificantlycountryHoweverWHOregionsstatisticallyConclusions:foundprevalentRegionalvariationsdetectedexhibitingfindingsunderlinepublicimpactespeciallynecessitatingcontext-specificpreventionFutureresearchstriveaddressregionaldisparitiesaspireattaingloballyrepresentativeEpidemiologyNeonateswithinNeonatalIntensiveCareUnits:ReviewMeta-analysismethicillin-resistantStaphylococcusaureus

Similar Articles

Cited By (1)