Strand-biased gene distribution in bacteria is related to both horizontal gene transfer and strand-biased nucleotide composition.

Hao Wu, Hongzhu Qu, Ning Wan, Zhang Zhang, Songnian Hu, Jun Yu
Author Information
  1. Hao Wu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

Abstract

Although strand-biased gene distribution (SGD) was described some two decades ago, the underlying molecular mechanisms and their relationship remain elusive. Its facets include, but are not limited to, the degree of biases, the strand-preference of genes, and the influence of background nucleotide composition variations. Using a dataset composed of 364 non-redundant bacterial genomes, we sought to illustrate our current understanding of SGD. First, when we divided the collection of bacterial genomes into non-polC and polC groups according to their possession of DnaE isoforms that correlate closely with taxonomy, the SGD of the polC group stood out more significantly than that of the non-polC group. Second, when examining horizontal gene transfer, coupled with gene functional conservation (essentiality) and expressivity (level of expression), we realized that they all contributed to SGD. Third, we further demonstrated a weaker G-dominance on the leading strand of the non-polC group but strong purine dominance (both G and A) on the leading strand of the polC group. We propose that strand-biased nucleotide composition plays a decisive role for SGD since the polC-bearing genomes are not only AT-rich but also have pronounced purine-rich leading strands, and we believe that a special mutation spectrum that leads to a strong purine asymmetry and a strong strand-biased nucleotide composition coupled with functional selections for genes and their functions are both at work.

References

  1. Cell. 2002 Mar 8;108(5):583-6 [PMID: 11893328]
  2. BMC Genomics. 2007 Jun 04;8:143 [PMID: 17547756]
  3. Res Microbiol. 2007 May;158(4):363-70 [PMID: 17449227]
  4. Nucleic Acids Res. 2005 Jun 07;33(10):3224-34 [PMID: 15942025]
  5. Trends Microbiol. 2002 Sep;10(9):393-5 [PMID: 12217498]
  6. Genome Res. 2003 Jul;13(7):1589-94 [PMID: 12840037]
  7. J Mol Evol. 1998 Dec;47(6):691-6 [PMID: 9847411]
  8. Annu Rev Biochem. 1988;57:519-50 [PMID: 3052282]
  9. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2094-9 [PMID: 11854504]
  10. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  11. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D271-2 [PMID: 14681410]
  12. Nat Genet. 2000 Oct;26(2):195-7 [PMID: 11017076]
  13. Nat Genet. 2003 Aug;34(4):377-8 [PMID: 12847524]
  14. Genome Res. 2002 Jun;12(6):962-8 [PMID: 12045149]
  15. Nature. 1991 Aug 8;352(6335):544-7 [PMID: 1865910]
  16. Biochem Biophys Res Commun. 2010 May 28;396(2):472-6 [PMID: 20417622]
  17. Genome Biol. 2008;9(3):R60 [PMID: 18366792]
  18. Bioinformatics. 2007 Jul 15;23(14):1866-7 [PMID: 17496319]
  19. Curr Genomics. 2012 Mar;13(1):55-64 [PMID: 22942675]
  20. Res Microbiol. 2010 Dec;161(10):838-46 [PMID: 20868744]
  21. Biol Direct. 2012 Jan 10;7:2 [PMID: 22230424]
  22. Annu Rev Genet. 2008;42:211-33 [PMID: 18605898]
  23. Trends Biochem Sci. 1996 Apr;21(4):128-9 [PMID: 8701468]
  24. Biochem Biophys Res Commun. 2007 Apr 27;356(1):20-5 [PMID: 17336933]
  25. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):581-6 [PMID: 12522265]
  26. Cell. 1988 Jun 3;53(5):679-86 [PMID: 3286014]
  27. Nucleic Acids Res. 2004 Feb 11;32(3):1050-8 [PMID: 14960717]
  28. Nucleic Acids Res. 2003 Mar 15;31(6):1780-9 [PMID: 12626720]
  29. Mol Cell Biol. 2005 Feb;25(3):888-95 [PMID: 15657418]
  30. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5608-13 [PMID: 17372224]
  31. Science. 2002 Jun 28;296(5577):2376-9 [PMID: 12089438]
  32. Mol Biol Evol. 1996 May;13(5):660-5 [PMID: 8676740]
  33. Nucleic Acids Res. 2003 Jan 1;31(1):187-9 [PMID: 12519978]
  34. Microbiology (Reading). 2006 Nov;152(Pt 11):3319-3325 [PMID: 17074902]
  35. Nucleic Acids Res. 2003 Nov 15;31(22):6570-7 [PMID: 14602916]
  36. Nucleic Acids Res. 2008 Dec;36(21):6688-719 [PMID: 18948295]
  37. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  38. Science. 1995 Jul 28;269(5223):538-40 [PMID: 7542802]
  39. Science. 2001 Nov 23;294(5547):1716-9 [PMID: 11721055]
  40. Genetics. 2009 Aug;182(4):1365-75 [PMID: 19474197]
  41. Genomics. 2007 Aug;90(2):186-94 [PMID: 17532183]
  42. Science. 1993 Jul 30;261(5121):598-600 [PMID: 8342022]
  43. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):203-11 [PMID: 17531796]
  44. Nature. 2000 May 18;405(6784):299-304 [PMID: 10830951]
  45. Bioinformatics. 2004 Nov 1;20(16):2719-25 [PMID: 15145803]

MeSH Term

Bacteria
Bacterial Proteins
Base Composition
DNA, Bacterial
DNA-Directed DNA Polymerase
Gene Transfer, Horizontal
Genes, Bacterial
Genome, Bacterial
Nucleotides
Purines

Chemicals

Bacterial Proteins
DNA, Bacterial
Nucleotides
Purines
PolC protein, bacteria
DNA-Directed DNA Polymerase

Word Cloud

Similar Articles

Cited By