The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

Nyok-Sean Lau, Yuko Makita, Mika Kawashima, Todd D Taylor, Shinji Kondo, Ahmad Sofiman Othman, Alexander Chong Shu-Chien, Minami Matsui
Author Information
  1. Nyok-Sean Lau: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  2. Yuko Makita: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  3. Mika Kawashima: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  4. Todd D Taylor: Laboratory for Integrated Bioinformatics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  5. Shinji Kondo: Transdisciplinary Research Integration Center, National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan.
  6. Ahmad Sofiman Othman: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  7. Alexander Chong Shu-Chien: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  8. Minami Matsui: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.

Abstract

Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55���Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.

References

  1. Genome Res. 2002 Aug;12(8):1269-76 [PMID: 12176934]
  2. Phytochemistry. 2001 Aug;57(7):1123-34 [PMID: 11430985]
  3. DNA Res. 2011 Dec;18(6):471-82 [PMID: 22086998]
  4. Nat Commun. 2014 Oct 10;5:5110 [PMID: 25300236]
  5. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15776-81 [PMID: 14663149]
  6. Genome Biol. 2010;11(11):R116 [PMID: 21114842]
  7. Plant Mol Biol. 2003 Nov;53(4):479-92 [PMID: 15010614]
  8. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  9. Planta. 2014 Aug;240(2):337-44 [PMID: 24841475]
  10. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  11. J Proteomics. 2016 Jan 10;131:82-92 [PMID: 26477389]
  12. Biochem J. 1969 Sep;114(2):379-86 [PMID: 4390212]
  13. Physiol Mol Biol Plants. 2013 Jul;19(3):307-21 [PMID: 24431500]
  14. Plant Physiol. 2014 Feb;164(2):513-24 [PMID: 24306534]
  15. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  16. Biosci Biotechnol Biochem. 2012;76(7):1394-6 [PMID: 22785464]
  17. Nature. 2009 Jan 29;457(7229):551-6 [PMID: 19189423]
  18. Nat Protoc. 2012 Feb 23;7(3):542-61 [PMID: 22362160]
  19. Nat Genet. 2014 Jun;46(6):567-72 [PMID: 24836287]
  20. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 [PMID: 15980438]
  21. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  22. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  23. Genes Dev. 1999 Aug 1;13(15):2017-27 [PMID: 10444599]
  24. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  25. Eur J Biochem. 2003 Dec;270(23):4671-80 [PMID: 14622254]
  26. Nat Genet. 2014 Mar;46(3):270-8 [PMID: 24441736]
  27. Nat Biotechnol. 2010 Sep;28(9):951-6 [PMID: 20729833]
  28. Genome Res. 2005 May;15(5):616-28 [PMID: 15867426]
  29. BMC Genomics. 2013 Feb 02;14:75 [PMID: 23375136]
  30. Bioinformatics. 2014 Feb 15;30(4):566-8 [PMID: 24297520]
  31. Nucleic Acids Res. 2003 Jan 1;31(1):439-41 [PMID: 12520045]
  32. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  33. Genome Res. 1998 Nov;8(11):1113-30 [PMID: 9847076]
  34. Genome Res. 2008 Jan;18(1):188-96 [PMID: 18025269]
  35. Bioinformatics. 2006 Feb 1;22(3):356-8 [PMID: 16317077]
  36. Nat Commun. 2014 May 08;5:3833 [PMID: 24807620]
  37. BMC Genomics. 2012 May 18;13:192 [PMID: 22607098]
  38. Nucleic Acids Res. 2015 Apr 30;43(8):e51 [PMID: 25653163]
  39. Genome Res. 2000 Apr;10(4):516-22 [PMID: 10779491]
  40. Adv Genet. 2004;52:51-115 [PMID: 15522733]
  41. Nature. 2012 May 16;486(7402):228-32 [PMID: 22699612]
  42. J Biol Chem. 2015 Jan 23;290(4):1898-914 [PMID: 25477521]
  43. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]
  44. Biol Direct. 2011 Mar 17;6:19 [PMID: 21414203]
  45. Nat Genet. 2006 Jun;38(6):626-35 [PMID: 16645617]
  46. BMC Bioinformatics. 2015 Jan 28;16:24 [PMID: 25627334]
  47. Plant Signal Behav. 2009 Nov;4(11):1072-4 [PMID: 20009550]
  48. Curr Protoc Bioinformatics. 2011 Sep;Chapter 4:4.6.1-4.6.10 [PMID: 21901742]
  49. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  50. Nat Prod Rep. 2001 Apr;18(2):182-9 [PMID: 11336288]
  51. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  52. Biochem J. 1971 Sep;124(2):407-17 [PMID: 4333851]
  53. Cell Rep. 2012 Jun 28;1(6):639-47 [PMID: 22813739]
  54. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  55. Bioinformatics. 2012 Apr 15;28(8):1086-92 [PMID: 22368243]
  56. BMC Res Notes. 2014 Feb 01;7:69 [PMID: 24484543]
  57. PLoS One. 2012;7(11):e47768 [PMID: 23185243]
  58. Plant Mol Biol. 2011 Oct;77(3):299-308 [PMID: 21811850]
  59. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  60. Curr Opin Struct Biol. 1998 Jun;8(3):333-7 [PMID: 9666329]
  61. BMC Genomics. 2014 Apr 25;15:269 [PMID: 24779366]
  62. Genome Res. 2014 Aug;24(8):1384-95 [PMID: 24755901]
  63. DNA Res. 2011 Feb;18(1):65-76 [PMID: 21149391]
  64. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]

Grants

  1. UL1 TR001863/NCATS NIH HHS

MeSH Term

Genome, Plant
Genomics
Hevea
Latex
Plant Proteins
RNA, Plant
Rubber
Sequence Analysis, RNA
Transcriptome

Chemicals

Latex
Plant Proteins
RNA, Plant
Rubber

Word Cloud

Similar Articles

Cited By