The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

Nyok-Sean Lau, Yuko Makita, Mika Kawashima, Todd D Taylor, Shinji Kondo, Ahmad Sofiman Othman, Alexander Chong Shu-Chien, Minami Matsui
Author Information
  1. Nyok-Sean Lau: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  2. Yuko Makita: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  3. Mika Kawashima: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  4. Todd D Taylor: Laboratory for Integrated Bioinformatics, RIKEN Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
  5. Shinji Kondo: Transdisciplinary Research Integration Center, National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan.
  6. Ahmad Sofiman Othman: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  7. Alexander Chong Shu-Chien: Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia.
  8. Minami Matsui: Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Biomass Engineering Research Division, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.

Abstract

Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.

References

  1. Genome Biol. 2010;11(11):R116 pubmed:21114842
  2. BMC Res Notes. 2014 Feb 01;7:69 pubmed:24484543
  3. Plant Physiol. 2014 Feb;164(2):513-24 pubmed:24306534
  4. BMC Bioinformatics. 2015 Jan 28;16:24 pubmed:25627334
  5. Nature. 2012 May 16;486(7402):228-32 pubmed:22699612
  6. J Proteomics. 2016 Jan 10;131:82-92 pubmed:26477389
  7. DNA Res. 2011 Dec;18(6):471-82 pubmed:22086998
  8. Nat Commun. 2014 May 08;5:3833 pubmed:24807620
  9. Genome Res. 1998 Nov;8(11):1113-30 pubmed:9847076
  10. Cell Rep. 2012 Jun 28;1(6):639-47 pubmed:22813739
  11. Nat Genet. 2014 Jun;46(6):567-72 pubmed:24836287
  12. BMC Genomics. 2014 Apr 25;15:269 pubmed:24779366
  13. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 pubmed:15980438
  14. Bioinformatics. 2012 Apr 15;28(8):1086-92 pubmed:22368243
  15. Curr Protoc Bioinformatics. 2011 Sep;Chapter 4:Unit 4.6.1-10 pubmed:21901742
  16. Nat Prod Rep. 2001 Apr;18(2):182-9 pubmed:11336288
  17. J Biol Chem. 2015 Jan 23;290(4):1898-914 pubmed:25477521
  18. Phytochemistry. 2001 Aug;57(7):1123-34 pubmed:11430985
  19. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 pubmed:16845043
  20. Genome Res. 2003 Sep;13(9):2178-89 pubmed:12952885
  21. Biosci Biotechnol Biochem. 2012;76(7):1394-6 pubmed:22785464
  22. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 pubmed:9862982
  23. Nucleic Acids Res. 2003 Jan 1;31(1):439-41 pubmed:12520045
  24. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 pubmed:9023104
  25. BMC Genomics. 2013 Feb 02;14:75 pubmed:23375136
  26. Plant Signal Behav. 2009 Nov;4(11):1072-4 pubmed:20009550
  27. BMC Bioinformatics. 2004 May 14;5:59 pubmed:15144565
  28. Genome Res. 2008 Jan;18(1):188-96 pubmed:18025269
  29. Nature. 2009 Jan 29;457(7229):551-6 pubmed:19189423
  30. Bioinformatics. 2005 Sep 15;21(18):3674-6 pubmed:16081474
  31. Genome Res. 2005 May;15(5):616-28 pubmed:15867426
  32. Eur J Biochem. 2003 Dec;270(23):4671-80 pubmed:14622254
  33. DNA Res. 2011 Feb;18(1):65-76 pubmed:21149391
  34. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 pubmed:21593126
  35. Nat Genet. 2006 Jun;38(6):626-35 pubmed:16645617
  36. Bioinformatics. 2006 Feb 1;22(3):356-8 pubmed:16317077
  37. Nucleic Acids Res. 2015 Apr 30;43(8):e51 pubmed:25653163
  38. Biochem J. 1971 Sep;124(2):407-17 pubmed:4333851
  39. Plant Mol Biol. 2011 Oct;77(3):299-308 pubmed:21811850
  40. Genome Res. 2014 Aug;24(8):1384-95 pubmed:24755901
  41. Nat Biotechnol. 2010 Sep;28(9):951-6 pubmed:20729833
  42. Bioinformatics. 2014 Feb 15;30(4):566-8 pubmed:24297520
  43. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10 pubmed:19274634
  44. Physiol Mol Biol Plants. 2013 Jul;19(3):307-21 pubmed:24431500
  45. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15776-81 pubmed:14663149
  46. Nat Protoc. 2012 Feb 23;7(3):542-61 pubmed:22362160
  47. Genome Res. 2002 Aug;12(8):1269-76 pubmed:12176934
  48. PLoS One. 2012;7(11):e47768 pubmed:23185243
  49. Genome Res. 2000 Apr;10(4):516-22 pubmed:10779491
  50. Bioinformatics. 2009 Jul 15;25(14):1754-60 pubmed:19451168
  51. Nat Commun. 2014 Oct 10;5:5110 pubmed:25300236
  52. Bioinformatics. 2009 May 15;25(10):1335-7 pubmed:19307242
  53. Planta. 2014 Aug;240(2):337-44 pubmed:24841475
  54. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 pubmed:15961478
  55. Adv Genet. 2004;52:51-115 pubmed:15522733
  56. BMC Genomics. 2012 May 18;13:192 pubmed:22607098
  57. Nucleic Acids Res. 2012 Apr;40(7):e49 pubmed:22217600
  58. Genes Dev. 1999 Aug 1;13(15):2017-27 pubmed:10444599
  59. Plant Mol Biol. 2003 Nov;53(4):479-92 pubmed:15010614
  60. Biochem J. 1969 Sep;114(2):379-86 pubmed:4390212
  61. Curr Opin Struct Biol. 1998 Jun;8(3):333-7 pubmed:9666329
  62. Nat Genet. 2014 Mar;46(3):270-8 pubmed:24441736
  63. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 pubmed:17531802

Grants

  1. UL1 TR001863/NCATS NIH HHS

MeSH Term

Genome, Plant
Genomics
Hevea
Latex
Plant Proteins
RNA, Plant
Rubber
Sequence Analysis, RNA
Transcriptome

Chemicals

Latex
Plant Proteins
RNA, Plant
Rubber