Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy.

Hanqing Xiong, Naixin Qian, Zhilun Zhao, Lingyan Shi, Yupeng Miao, Wei Min
Author Information

Abstract

Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.

References

  1. J Am Chem Soc. 2012 Dec 26;134(51):20681-9 [PMID: 23198907]
  2. Chemphyschem. 2008 Apr 4;9(5):697-9 [PMID: 18330856]
  3. Opt Lett. 2006 Jun 15;31(12):1872-4 [PMID: 16729099]
  4. J Phys Chem B. 2010 Dec 23;114(50):16871-80 [PMID: 21126030]
  5. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  6. Opt Lett. 2012 Feb 15;37(4):473-5 [PMID: 22344077]
  7. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  8. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  9. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  10. J Am Chem Soc. 2017 Jan 18;139(2):583-586 [PMID: 28027644]
  11. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  12. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  13. Nat Commun. 2018 Jul 30;9(1):2942 [PMID: 30061610]
  14. J Phys Chem B. 2019 Oct 10;123(40):8397-8404 [PMID: 31532680]
  15. Analyst. 2017 Oct 23;142(21):4018-4029 [PMID: 28875184]
  16. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  17. Phys Biol. 2019 Apr 23;16(4):041003 [PMID: 30870829]
  18. Opt Lett. 2017 Feb 1;42(3):523-526 [PMID: 28146518]
  19. Opt Express. 2009 Jul 20;17(15):12532-9 [PMID: 19654655]
  20. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  21. Opt Express. 2013 Jun 3;21(11):13864-74 [PMID: 23736639]
  22. Phys Rev Lett. 2014 Feb 7;112(5):053905 [PMID: 24580595]
  23. Nat Commun. 2018 Aug 6;9(1):2995 [PMID: 30082908]
  24. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  25. J Phys Chem B. 2013 Apr 25;117(16):4634-40 [PMID: 23256635]
  26. J Chem Phys. 2008 Aug 14;129(6):064507 [PMID: 18715085]
  27. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  28. Annu Rev Biophys. 2019 May 6;48:347-369 [PMID: 30892920]
  29. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  30. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  31. Sci Rep. 2019 Jul 11;9(1):10052 [PMID: 31296917]

Grants

  1. R01 GM132860/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0SRSmicroscopyRamanchemicallaserimagingbondssensitivitystimulatedscatteringopticsstandardbackgroundscontrastdemonstratedadditionalnoisesimplerobuststrategyFM-SRSsystemmodulationspectralbackground-freemodesmethodableimagehighspeedmademajorimpactbiomedicalHoweverwellknownsuffersvariouslimitingachievablequantificationmanyfrequency-modulationFMschemesretrievesharpvibrationaloftenrequirecustomizedsystemsand/orcomplicatedpulseshapingintroducetherebyhinderingwideadoptionHereinreportbasedpopularcommercialregularHarnessingself-phaseinducedself-balancedsplittingpicosecondStokesbeampropagatingsingle-modesilicafibershigh-performanceconstructedwithoutintroducingsignalenablesadaptiveresolutiondifferentlinewidthsgeneralityvarietyeffectivesuppressingincludingnon-resonantcrossphaseelectronicbackgroundtwo-photonabsorptionpump-probeprocesspromisingadoptedcommunityBackground-freefrequency-modulated

Similar Articles

Cited By (9)