Spatio-Temporal Modeling for Forecasting High-Risk Freshwater Cyanobacterial Harmful Algal Blooms in Florida.

Mark H Myer, Erin Urquhart, Blake A Schaeffer, John M Johnston
Author Information
  1. Mark H Myer: US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Athens, GA, United States.
  2. Erin Urquhart: US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Research Triangle Park, NC, United States.
  3. Blake A Schaeffer: US Environmental Protection Agency, Center for Exposure Measurement and Modeling, Research Triangle Park, NC, United States.
  4. John M Johnston: US Environmental Protection Agency, Center for Exposure Measurement and Modeling, Athens, GA, United States.

Abstract

Due to the occurrence of more frequent and widespread toxic cyanobacteria events, the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is of critical importance for the management of drinking and recreational waters. Lake system specific geographic variation of cyanoHABs has been reported, but regional and state level variation is infrequently examined. A spatio-temporal modeling approach can be applied, via the computationally efficient Integrated Nested Laplace Approximation (INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations across statewide geographic scales. We explore the potential for using satellite-derived data and environmental determinants to develop a short-term forecasting tool for cyanobacteria presence at varying space-time domains for the state of Florida. Weekly cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color Imagery (OLCI), for a period of May 2016-June 2019. Time and space varying covariates include surface water temperature, ambient temperature, precipitation, and lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in R-INLA represents a potential forecasting tool useful for water managers and associated public health applications for predicting near future high-risk cyanoHAB occurrence given the spatio-temporal characteristics of these events in the recent past. This method is robust to missing data and unbalanced sampling between waterbodies, both common issues in water quality datasets.

Keywords

References

  1. Appl Environ Microbiol. 1997 Jun;63(6):2206-12 [PMID: 9172340]
  2. F1000Res. 2017 Sep 21;6:1718 [PMID: 29188019]
  3. PLoS One. 2015 Aug 12;10(8):e0135454 [PMID: 26267813]
  4. Harmful Algae. 2017 Jul;67:13-25 [PMID: 28755715]
  5. Water Res. 2017 Nov 1;124:11-19 [PMID: 28734958]
  6. J Data Sci. 2018 Jan;16(1):147-182 [PMID: 29520299]
  7. Int J Remote Sens. 2018 May 10;39(22):7789-7805 [PMID: 36419964]
  8. Ecol Indic. 2017 Sep;80:84-95 [PMID: 30245589]
  9. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6448-52 [PMID: 23576718]
  10. Sci Total Environ. 2019 Feb 10;650(Pt 2):2818-2829 [PMID: 30373059]
  11. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  12. Ecol Indic. 2020 Apr 1;111:105976 [PMID: 34326705]
  13. Appl Environ Microbiol. 1978 Oct;36(4):572-6 [PMID: 16345318]
  14. Environ Sci Pollut Res Int. 2012 Mar;19(3):858-70 [PMID: 21948141]
  15. Data Brief. 2019 Nov 16;28:104826 [PMID: 31871980]
  16. Comp Biochem Physiol C Toxicol Pharmacol. 2016 Nov;189:22-30 [PMID: 27449270]
  17. Environ Manage. 2015 Apr;55(4):763-75 [PMID: 24178125]
  18. Toxicon. 2017 Nov;138:169-172 [PMID: 28899665]
  19. Sci Total Environ. 2011 Nov 15;409(24):5353-8 [PMID: 21975001]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0cyanobacteriaspatio-temporalcyanoHABmodelingdatawateroccurrenceeventsharmfulalgalbloomsgeographicvariationstateapproachLaplacehigh-riskexplorepotentialusingforecastingtoolvaryingFloridatemperaturehierarchicalDuefrequentwidespreadtoxicabilitypredictfreshwatercriticalimportancemanagementdrinkingrecreationalwatersLakesystemspecificcyanoHABsreportedregionallevelinfrequentlyexaminedcanappliedviacomputationallyefficientIntegratedNestedApproximationINLAexceedanceratesvariationsacrossstatewidescalessatellite-derivedenvironmentaldeterminantsdevelopshort-termpresencespace-timedomainsWeeklyabundanceobtainedSentinel-3OceanLandColorImageryOLCIperiodMay2016-June2019TimespacecovariatesincludesurfaceambientprecipitationlakegeomorphologyBayesianR-INLArepresentsusefulmanagersassociatedpublichealthapplicationspredictingnearfuturegivencharacteristicsrecentpastmethodrobustmissingunbalancedsamplingwaterbodiescommonissuesqualitydatasetsSpatio-TemporalModelingForecastingHigh-RiskFreshwaterCyanobacterialHarmfulAlgalBloomsBayesintegratednestedapproximationpredictiveremotesensing

Similar Articles

Cited By (6)