Comprehensive transcriptomics and proteomics analysis of gills in response to .

Xiucai Hu, Jie Bai, Rongrong Liu, Aijun Lv
Author Information
  1. Xiucai Hu: Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.
  2. Jie Bai: Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.
  3. Rongrong Liu: Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.
  4. Aijun Lv: Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.

Abstract

As one of the mucosal barriers, fish gills represent the first line of defense against pathogen infection. However, the exact mechanism of gill mucosal immune response to bacterial infection still needs further investigation in fish. Here, to investigate pathological changes and molecular mechanisms of the mucosal immune response in the gills of crucian carp () challenged by , the transcriptomics and proteomics were performed by using multi-omics analyses of RNA-seq coupled with iTRAQ techniques. The results demonstrated gill immune response were mostly related to the activation of complement and coagulation cascades, antigen processing and presentation, phagosome, NOD-like receptor (NLR) and nuclear factor κB (NFκB) signaling pathway. Selected 21 immune-related DEGs (ie., and ) were verified for their immune roles in the infection using qRT-PCR assay. Meanwhile, some complement (C3, C7, C9, CFD, DF and FH) and antigen presenting (HSP90, MHC Ⅱ, CALR, CANX and PSME) proteins were significantly participated in the process of defense against infections in gill tissues, and protein-protein interaction (PPI) network displayed the immune signaling pathways and interactions among these DEPs. The correlation analysis indicated that the iTRAQ and qRT-PCR results was significantly correlated (Pearson's correlation coefficient = 0.70,  < 0.01). To our knowledge, the transcriptomics and proteomics of gills firstly identified by multi-omics analyses contribute to understanding on the molecular mechanisms of local mucosal immunity in cyprinid species.

Keywords

References

  1. Fish Shellfish Immunol. 2020 Sep;104:324-336 [PMID: 32553982]
  2. Fish Shellfish Immunol. 2013 Mar;34(3):885-91 [PMID: 23291105]
  3. Fish Shellfish Immunol. 2017 Nov;70:57-65 [PMID: 28866273]
  4. Front Immunol. 2018 Sep 20;9:2116 [PMID: 30294324]
  5. Fish Shellfish Immunol. 2020 Jun;101:19-50 [PMID: 32184191]
  6. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Jun;7(2):220-32 [PMID: 22480594]
  7. Fish Shellfish Immunol. 2009 Aug;27(2):192-201 [PMID: 19442741]
  8. Fish Shellfish Immunol. 2019 Mar;86:107-115 [PMID: 30447430]
  9. PLoS One. 2019 Jun 20;14(6):e0218630 [PMID: 31220151]
  10. Fish Shellfish Immunol. 2013 Jan;34(1):372-7 [PMID: 23159835]
  11. J Fish Dis. 2020 Dec;43(12):1541-1552 [PMID: 32924190]
  12. Fish Shellfish Immunol. 2018 Dec;83:359-367 [PMID: 30236608]
  13. Fish Shellfish Immunol. 2019 Nov;94:294-307 [PMID: 31491530]
  14. Fish Shellfish Immunol. 2019 Apr;87:695-704 [PMID: 30703552]
  15. Fish Shellfish Immunol. 2013 Dec;35(6):2040-5 [PMID: 24184007]
  16. Cell Stress Chaperones. 2016 Nov;21(6):983-991 [PMID: 27527721]
  17. Fish Shellfish Immunol. 2018 Dec;83:410-415 [PMID: 30201448]
  18. Fish Shellfish Immunol. 2015 Feb;42(2):272-9 [PMID: 25463300]
  19. Front Immunol. 2020 Sep 04;11:2154 [PMID: 33013908]
  20. Zebrafish. 2020 Apr;17(2):91-103 [PMID: 32176570]
  21. Fish Shellfish Immunol. 2019 May;88:189-197 [PMID: 30826411]
  22. Mar Biotechnol (NY). 2006 Nov-Dec;8(6):611-23 [PMID: 16832747]
  23. Dev Comp Immunol. 2011 Mar;35(3):267-72 [PMID: 21093478]
  24. Fish Shellfish Immunol. 2012 Oct;33(4):788-94 [PMID: 22842150]
  25. Fish Shellfish Immunol. 2014 Sep;40(1):69-77 [PMID: 24979223]
  26. Fish Shellfish Immunol. 2019 Mar;86:486-496 [PMID: 30513380]
  27. Genomics. 2019 May;111(3):222-230 [PMID: 30465915]
  28. Fish Shellfish Immunol. 2020 Sep;104:304-313 [PMID: 32544557]
  29. Fish Shellfish Immunol. 2020 May;100:386-396 [PMID: 32165249]
  30. Immunopharmacology. 2000 Aug;49(1-2):187-98 [PMID: 10904117]
  31. Fish Shellfish Immunol. 2019 Nov;94:599-606 [PMID: 31542493]
  32. Front Immunol. 2019 Aug 22;10:1991 [PMID: 31507599]
  33. Fish Shellfish Immunol. 2018 Jan;72:593-603 [PMID: 29175442]
  34. Fish Shellfish Immunol. 2019 Nov;94:355-372 [PMID: 31533079]
  35. Fish Shellfish Immunol. 2015 Jun;44(2):642-51 [PMID: 25827625]
  36. J Fish Biol. 2020 Nov;97(5):1542-1553 [PMID: 32885862]
  37. PLoS One. 2014 Jan 16;9(1):e85505 [PMID: 24454879]
  38. Mol Immunol. 2013 Dec;56(4):317-27 [PMID: 23895942]
  39. Front Microbiol. 2016 Oct 18;7:1615 [PMID: 27803692]
  40. Fish Shellfish Immunol. 2019 Nov;94:510-516 [PMID: 31541778]
  41. Fish Shellfish Immunol. 2018 Jun;77:319-327 [PMID: 29631024]
  42. Fish Physiol Biochem. 2016 Jun;42(3):935-46 [PMID: 26721661]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. Fish Shellfish Immunol. 2014 Jan;36(1):229-39 [PMID: 24269520]
  45. Fish Shellfish Immunol. 2018 Nov;82:386-399 [PMID: 30071344]
  46. Int J Biol Macromol. 2020 Apr 28;158:569-579 [PMID: 32360202]
  47. Fish Shellfish Immunol. 2019 Nov;94:99-112 [PMID: 31476388]
  48. Environ Pollut. 2020 Feb;257:113591 [PMID: 31744679]
  49. Fish Shellfish Immunol. 2020 Sep;104:673-685 [PMID: 32505719]
  50. Fish Shellfish Immunol. 2019 Jun;89:319-325 [PMID: 30970281]
  51. Dev Comp Immunol. 2021 Jan;114:103872 [PMID: 32949686]
  52. Dis Aquat Organ. 2017 Mar 21;123(3):205-212 [PMID: 28322207]
  53. Fish Shellfish Immunol. 2016 Apr;51:211-219 [PMID: 26902705]
  54. Fish Shellfish Immunol. 2014 Oct;40(2):634-43 [PMID: 25150451]
  55. Fish Shellfish Immunol. 2016 May;52:31-43 [PMID: 26975410]
  56. Fish Shellfish Immunol. 2014 Jan;36(1):240-51 [PMID: 24287371]

Word Cloud

Created with Highcharts 10.0.0immunemucosalgillsresponseinfectiongilltranscriptomicsproteomicsfishdefensemolecularmechanismsusingmulti-omicsanalysesiTRAQresultscomplementantigensignalingqRT-PCRsignificantlycorrelationanalysisimmunityonebarriersrepresentfirstlinepathogenHoweverexactmechanismbacterialstillneedsinvestigationinvestigatepathologicalchangescruciancarpchallengedperformedRNA-seqcoupledtechniquesdemonstratedmostlyrelatedactivationcoagulationcascadesprocessingpresentationphagosomeNOD-likereceptorNLRnuclearfactorκBNFκBpathwaySelected21immune-relatedDEGsieverifiedrolesassayMeanwhileC3C7C9CFDDFFHpresentingHSP90MHCCALRCANXPSMEproteinsparticipatedprocessinfectionstissuesprotein-proteininteractionPPInetworkdisplayedpathwaysinteractionsamongDEPsindicatedcorrelatedPearson'scoefficient = 070< 001knowledgefirstlyidentifiedcontributeunderstandinglocalcyprinidspeciesComprehensiveAeromonashydrophilaCarassiusauratusGillProteomeTranscriptome

Similar Articles

Cited By (5)