Long-term radiofrequency electromagnetic fields exposure attenuates cognitive dysfunction in 5×FAD mice by regulating microglial function.

Yeonghoon Son, Hye-Jin Park, Ye Ji Jeong, Hyung-Do Choi, Nam Kim, Hae-June Lee
Author Information
  1. Yeonghoon Son: Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
  2. Hye-Jin Park: Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
  3. Ye Ji Jeong: Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
  4. Hyung-Do Choi: Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, Electronics and Telecommunications Research Institute, Daejon, Korea.
  5. Nam Kim: School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea.
  6. Hae-June Lee: Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.

Abstract

We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5×FAD mice with severe late-stage Alzheimer's disease reduced both amyloid-β deposition and glial activation, including microglia. To examine whether this therapeutic effect is due to the regulation of activated microglia, we analyzed microglial gene expression profiles and the existence of microglia in the brain in this study. 5×FAD mice at the age of 1.5 months were assigned to sham- and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months. We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/amyloid-beta metabolism in brain tissue. We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-β deposition. The expression levels of Iba1 (pan-microglial marker) and colony-stimulating factor 1 receptor (Csf1r; regulates microglial proliferation) in the hippocampus in 5×FAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group. Subsequently, we analyzed the expression levels of genes related to microgliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a Csf1r.inhibitor (PLX3397)-treated group. Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis (Csf1r, CD68, and Ccl6) and pro-inflammatory cytokine interleukin-1β. Notably, the expression levels of genes related to microglial function, including Trem2, Fcgr1a, Ctss, and Spi1, were decreased after long-term radiofrequency electromagnetic field exposure, which was also observed in response to microglial suppression by PLX3397. These results showed that radiofrequency electromagnetic fields ameliorated amyloid-β pathology and cognitive impairment by suppressing amyloid-β deposition-induced microgliosis and their key regulator, Csf1r.

Keywords

References

  1. Int J Mol Sci. 2020 Aug 03;21(15): [PMID: 32756440]
  2. Sci Rep. 2021 Jan 12;11(1):621 [PMID: 33436686]
  3. CNS Neurol Disord Drug Targets. 2008 Jun;7(3):270-7 [PMID: 18673211]
  4. Glia. 2016 Oct;64(10):1710-32 [PMID: 27100611]
  5. J Alzheimers Dis. 2010;19(1):191-210 [PMID: 20061638]
  6. Sci Rep. 2021 Mar 1;11(1):4910 [PMID: 33649346]
  7. J Neurosci. 2010 Nov 17;30(46):15369-73 [PMID: 21084593]
  8. Neurology. 2020 Jan 21;94(3):e254-e266 [PMID: 31818907]
  9. J Alzheimers Dis. 2001 Feb;3(1):75-80 [PMID: 12214075]
  10. Biochem Pharmacol. 2014 Apr 15;88(4):594-604 [PMID: 24445162]
  11. Cell Mol Life Sci. 2022 Apr 2;79(4):219 [PMID: 35366105]
  12. Behav Brain Res. 2013 Mar 1;240:197-201 [PMID: 23195115]
  13. Alzheimers Res Ther. 2020 Jul 6;12(1):80 [PMID: 32631408]
  14. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  15. Signal Transduct Target Ther. 2019 Aug 23;4:29 [PMID: 31637009]
  16. Neurotrauma Rep. 2021 Aug 17;2(1):381-390 [PMID: 34723249]
  17. J Alzheimers Dis. 2019;70(4):1259-1274 [PMID: 31322556]
  18. Front Neurosci. 2019 Feb 28;13:164 [PMID: 30872998]
  19. Cell Death Dis. 2020 Oct 23;11(10):904 [PMID: 33097690]
  20. Nat Rev Neurosci. 2015 Jun;16(6):358-72 [PMID: 25991443]
  21. J Cell Mol Med. 2009 Nov-Dec;13(11-12):4329-48 [PMID: 19725918]
  22. Int J Environ Res Public Health. 2017 Nov 05;14(11): [PMID: 29113072]
  23. Curr Alzheimer Res. 2015;12(5):481-92 [PMID: 26017559]
  24. J Alzheimers Dis. 2012;32(2):243-66 [PMID: 22810103]
  25. J Neuropathol Exp Neurol. 2009 Jan;68(1):1-14 [PMID: 19104448]
  26. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6962-E6971 [PMID: 28701379]
  27. J Exp Med. 2006 Apr 17;203(4):1007-19 [PMID: 16585265]
  28. Mol Neurodegener. 2018 Aug 20;13(1):44 [PMID: 30124174]
  29. Biol Chem. 2011 Apr;392(6):555-69 [PMID: 21585286]
  30. Nat Commun. 2019 Aug 21;10(1):3758 [PMID: 31434879]
  31. J Neurosci. 2013 Feb 6;33(6):2481-93 [PMID: 23392676]
  32. Bioelectromagnetics. 2012 May;33(4):356-64 [PMID: 22012556]
  33. J Alzheimers Dis. 2019;71(1):57-82 [PMID: 31403948]
  34. Front Immunol. 2019 Apr 16;10:790 [PMID: 31040847]
  35. Nat Rev Immunol. 2014 Jul;14(7):463-77 [PMID: 24962261]
  36. Neurosci Lett. 2018 Feb 14;666:64-69 [PMID: 29273398]
  37. Nat Rev Immunol. 2018 Apr;18(4):225-242 [PMID: 29151590]
  38. PLoS One. 2012;7(4):e35751 [PMID: 22558216]
  39. Lancet. 2006 Jul 29;368(9533):387-403 [PMID: 16876668]
  40. Front Mol Neurosci. 2021 Jan 12;13:615740 [PMID: 33510618]
  41. Int J Environ Res Public Health. 2019 May 08;16(9): [PMID: 31071933]
  42. Neuroscience. 2011 Jun 30;185:135-49 [PMID: 21514369]
  43. Mol Neurodegener. 2018 Mar 1;13(1):11 [PMID: 29490706]
  44. Bioelectromagnetics. 2016 Sep;37(6):391-9 [PMID: 27434853]
  45. Trends Cell Biol. 2016 Aug;26(8):587-597 [PMID: 27004698]

Word Cloud

Created with Highcharts 10.0.0radiofrequencyelectromagneticfieldsmicroglialexposure5×FADmiceamyloid-βexpressionlevelsCSF1Rfunctionincludingmicroglia5monthscognitivegroupgenesrelatedmicrogliosisPLX3397long-termdiseasereduceddepositiontherapeuticeffectanalyzedbrain1fields-exposed6testsfieldamelioratedimpairmentcomparedpreviouslyfoundeffectsseverelate-stageAlzheimer'sglialactivationexaminewhetherdueregulationactivatedgeneprofilesexistencestudyageassignedsham-groupsanimalsexposed1950MHzspecificabsorptionrateW/kg2hours/daydays/weekconductedbehavioralobjectrecognitionY-mazemolecularhistopathologicalanalysisamyloidprecursorprotein/amyloid-betametabolismtissueconfirmedIba1pan-microglialmarkercolony-stimulatingfactorreceptorregulatesproliferationhippocampustreatedsignificantlysham-exposedSubsequentlyinhibitor-treatedsuppressedCsf1rCD68Ccl6pro-inflammatorycytokineinterleukin-1βNotablyTrem2Fcgr1aCtssSpi1decreasedalsoobservedresponsesuppressionresultsshowedpathologysuppressingdeposition-inducedkeyregulatorLong-termattenuatesdysfunctionregulatingAlzheimer’slongtermneuroinflammation

Similar Articles

Cited By (3)