Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants.

Guo-Qian Yang, Yun-Mei Chen, Jin-Peng Wang, Cen Guo, Lei Zhao, Xiao-Yan Wang, Ying Guo, Li Li, De-Zhu Li, Zhen-Hua Guo
Author Information
  1. Guo-Qian Yang: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China ; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201 China.
  2. Yun-Mei Chen: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China ; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201 China.
  3. Jin-Peng Wang: Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China.
  4. Cen Guo: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China ; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201 China.
  5. Lei Zhao: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China ; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201 China.
  6. Xiao-Yan Wang: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China.
  7. Ying Guo: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China ; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201 China.
  8. Li Li: Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China.
  9. De-Zhu Li: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China.
  10. Zhen-Hua Guo: Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China. ORCID

Abstract

BACKGROUND: The double digest restriction-site associated DNA sequencing technology (ddRAD-seq) is a reduced representation sequencing technology by sampling genome-wide enzyme loci developed on the basis of next-generation sequencing. ddRAD-seq has been widely applied to SNP marker development and genotyping on animals, especially on marine animals as the original ddRAD protocol is mainly built and trained based on animal data. However, wide application of ddRAD-seq technology in plant species has not been achieved so far. Here, we aim to develop an optimized ddRAD library preparation protocol be accessible to most angiosperm plant species without much startup pre-experiment and costs.
RESULTS: We first tested several combinations of enzymes by in silico analysis of 23 plant species covering 17 families of angiosperm and 1 family of bryophyta and found AvaII + MspI enzyme pair produced consistently higher number of fragments in a broad range of plant species. Then we removed two purifying and one quantifying steps of the original protocol, replaced expensive consumables and apparatuses by conventional experimental apparatuses. Besides, we shortened P1 adapter from 37 to 25 bp and designed a new barcode-adapter system containing 20 pairs of barcodes of varying length. This is an optimized ddRAD strategy for angiosperm plants that is economical, time-saving and requires little technical expertise or investment in laboratory equipment. We refer to this simplified protocol as MiddRAD and we demonstrated the utility and flexibility of our approach by resolving phylogenetic relationships of two genera of woody bamboos (Dendrocalamus and Phyllostachys). Overall our results provide empirical evidence for using this method on different model and non-model plants to produce consistent data.
CONCLUSIONS: As MiddRAD adopts an enzyme pair that works for a broad range of angiosperm plants, simplifies library constructing procedure and requires less DNA input, it will greatly facilitate designing a ddRAD project. Our optimization of this method may make ddRAD be widely used in fields of plant population genetics, phylogenetics, phylogeography and molecular breeding.

Keywords

References

  1. Sci Rep. 2015 Mar 23;5:9350 [PMID: 25797785]
  2. Genetics. 2007 Aug;176(4):2521-7 [PMID: 17277374]
  3. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  4. PLoS One. 2012;7(2):e32253 [PMID: 22389690]
  5. PLoS One. 2014 Feb 28;9(2):e90346 [PMID: 24587335]
  6. Nat Rev Genet. 2016 Feb;17(2):81-92 [PMID: 26729255]
  7. PLoS One. 2008;3(10):e3376 [PMID: 18852878]
  8. Mol Phylogenet Evol. 2016 Mar;96:118-129 [PMID: 26723898]
  9. BMC Genomics. 2014 Feb 06;15:104 [PMID: 24498911]
  10. Mol Ecol Resour. 2016 Nov;16(6):1303-1314 [PMID: 27739656]
  11. Genome Biol Evol. 2015 Nov 03;7(12):3207-25 [PMID: 26537225]
  12. Mol Ecol Resour. 2013 Sep;13(5):938-45 [PMID: 23848836]
  13. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  14. G3 (Bethesda). 2011 Aug;1(3):171-82 [PMID: 22384329]
  15. Methods Mol Biol. 2011;772:157-78 [PMID: 22065437]
  16. Plant J. 2014 Feb;77(3):430-42 [PMID: 24320550]
  17. Nat Methods. 2008 Dec;5(12):1005-10 [PMID: 19034268]
  18. BMC Genomics. 2015 Mar 15;16:189 [PMID: 25887315]
  19. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  20. Mol Ecol. 2014 Dec;23(24):5937-42 [PMID: 25319241]
  21. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  22. PLoS One. 2012;7(5):e37135 [PMID: 22675423]
  23. PeerJ. 2013 Nov 19;1:e203 [PMID: 24282669]
  24. PLoS One. 2014 Sep 04;9(9):e106713 [PMID: 25188270]
  25. PLoS One. 2013 Apr 29;8(4):e62856 [PMID: 23638157]
  26. Mol Phylogenet Evol. 2016 Jan;94(Pt A):122-35 [PMID: 26279345]
  27. Mol Ecol. 2013 Jun;22(11):3124-40 [PMID: 23701397]
  28. BMC Plant Biol. 2014 Oct 10;14:274 [PMID: 25300176]
  29. Nat Methods. 2012 May 20;9(8):808-10 [PMID: 22609625]
  30. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  31. J Plant Res. 2009 Jan;122(1):95-108 [PMID: 19018609]
  32. BMC Genomics. 2011 Jun 10;12:304 [PMID: 21663628]
  33. Mol Phylogenet Evol. 2014 Nov;80:137-44 [PMID: 25108259]
  34. BMC Genomics. 2014 Aug 23;15:708 [PMID: 25150411]
  35. New Phytol. 2014 Oct;204(1):66-73 [PMID: 25103958]
  36. Bioinformatics. 2014 Jul 1;30(13):1844-9 [PMID: 24603985]
  37. PLoS One. 2013;8(3):e58700 [PMID: 23527008]
  38. PLoS One. 2014 Apr 04;9(4):e93975 [PMID: 24705617]
  39. PLoS One. 2012;7(4):e33394 [PMID: 22493668]
  40. Nature. 2005 Aug 11;436(7052):793-800 [PMID: 16100779]
  41. Mol Biol Evol. 2014 May;31(5):1272-4 [PMID: 24497030]

Word Cloud

Created with Highcharts 10.0.0ddRADplantangiospermsequencingprotocolspeciesplantstechnologyddRAD-seqenzymelibraryMiddRADDNAwidelySNPgenotypinganimalsoriginaldataoptimizedpreparationpairbroadrangetwoapparatusesrequiressimplifiedapproachmethodBACKGROUND:doubledigestrestriction-siteassociatedreducedrepresentationsamplinggenome-widelocidevelopedbasisnext-generationappliedmarkerdevelopmentespeciallymarinemainlybuilttrainedbasedanimalHoweverwideapplicationachievedfaraimdevelopaccessiblewithoutmuchstartuppre-experimentcostsRESULTS:firsttestedseveralcombinationsenzymessilicoanalysis23covering17families1familybryophytafoundAvaII + MspIproducedconsistentlyhighernumberfragmentsremovedpurifyingonequantifyingstepsreplacedexpensiveconsumablesconventionalexperimentalBesidesshortenedP1adapter3725 bpdesignednewbarcode-adaptersystemcontaining20pairsbarcodesvaryinglengthstrategyeconomicaltime-savinglittletechnicalexpertiseinvestmentlaboratoryequipmentreferdemonstratedutilityflexibilityresolvingphylogeneticrelationshipsgenerawoodybamboosDendrocalamusPhyllostachysOverallresultsprovideempiricalevidenceusingdifferentmodelnon-modelproduceconsistentCONCLUSIONS:adoptsworkssimplifiesconstructingprocedurelessinputwillgreatlyfacilitatedesigningprojectoptimizationmaymakeusedfieldspopulationgeneticsphylogeneticsphylogeographymolecularbreedingDevelopmentuniversaldiscoveryGenotype-by-sequencingNext-generationRAD-seq

Similar Articles

Cited By (25)