Coexistence of genetically different Rhizophagus irregularis isolates induces genes involved in a putative fungal mating response.

Ivan D Mateus, Edward C Rojas, Romain Savary, Cindy Dupuis, Frédéric G Masclaux, Consolée Aletti, Ian R Sanders
Author Information
  1. Ivan D Mateus: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland. ivandario.mateusgonzalez@unil.ch. ORCID
  2. Edward C Rojas: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
  3. Romain Savary: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
  4. Cindy Dupuis: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
  5. Frédéric G Masclaux: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
  6. Consolée Aletti: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
  7. Ian R Sanders: Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland. ian.sanders@unil.ch. ORCID

Abstract

Arbuscular mycorrhizal fungi (AMF) are of great ecological importance because of their effects on plant growth. Closely related genotypes of the same AMF species coexist in plant roots. However, almost nothing is known about the molecular interactions occurring during such coexistence. We compared in planta AMF gene transcription in single and coinoculation treatments with two genetically different isolates of Rhizophagus irregularis in symbiosis independently on three genetically different cassava genotypes. Remarkably few genes were specifically upregulated when the two fungi coexisted. Strikingly, almost all of the genes with an identifiable putative function were known to be involved in mating in other fungal species. Several genes were consistent across host plant genotypes but more upregulated genes involved in putative mating were observed in host genotype (COL2215) compared with the two other host genotypes. The AMF genes that we observed to be specifically upregulated during coexistence were either involved in the mating pheromone response, in meiosis, sexual sporulation or were homologs of MAT-locus genes known in other fungal species. We did not observe the upregulation of the expected homeodomain genes contained in a putative AMF MAT-locus, but observed upregulation of HMG-box genes similar to those known to be involved in mating in Mucoromycotina species. Finally, we demonstrated that coexistence between the two fungal genotypes in the coinoculation treatments explained the number of putative mating response genes activated in the different plant host genotypes. This study demonstrates experimentally the activation of genes involved in a putative mating response and represents an important step towards the understanding of coexistence and sexual reproduction in these important plant symbionts.

References

  1. Nature. 2008 Jan 10;451(7175):193-6 [PMID: 18185588]
  2. Mol Cell Biol. 1996 Sep;16(9):4824-31 [PMID: 8756641]
  3. Cell. 1983 Feb;32(2):409-15 [PMID: 6337727]
  4. BMC Evol Biol. 2011 May 12;11:123 [PMID: 21569384]
  5. Eukaryot Cell. 2011 Nov;10(11):1485-91 [PMID: 21908600]
  6. Nat Commun. 2017 Nov 29;8(1):1843 [PMID: 29184190]
  7. New Phytol. 2018 Dec;220(4):968-970 [PMID: 29480929]
  8. Trends Ecol Evol. 1996 Feb;11(2):41-6 [PMID: 21237759]
  9. ISME J. 2018 Jan;12(1):17-30 [PMID: 29027999]
  10. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  11. Microbiology (Reading). 2012 Apr;158(Pt 4):1016-1023 [PMID: 22262094]
  12. J Cell Sci. 2011 Sep 1;124(Pt 17):2891-6 [PMID: 21878496]
  13. New Phytol. 2019 May;222(3):1584-1598 [PMID: 30636349]
  14. New Phytol. 2015 Mar;205(4):1406-1423 [PMID: 25639293]
  15. Genes Dev. 1994 Sep 15;8(18):2162-75 [PMID: 7958886]
  16. PLoS Genet. 2010 May 13;6(5):e1000953 [PMID: 20485569]
  17. Fungal Genet Biol. 2001 Oct;34(1):21-35 [PMID: 11567549]
  18. Genes Dev. 1990 Oct;4(10):1775-89 [PMID: 2249774]
  19. New Phytol. 2004 Oct;164(1):175-181 [PMID: 33873483]
  20. Am J Bot. 1999 Sep;86(9):1209-16 [PMID: 10487808]
  21. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31 [PMID: 15215404]
  22. Mol Microbiol. 2004 Jan;51(2):299-306 [PMID: 14756773]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. Curr Biol. 2003 Oct 14;13(20):R792-5 [PMID: 14561417]
  25. PLoS One. 2013 Nov 19;8(11):e80729 [PMID: 24260466]
  26. Nat Microbiol. 2016 Mar 21;1(6):16033 [PMID: 27572831]
  27. EMBO J. 1998 Oct 1;17(19):5525-8 [PMID: 9755152]
  28. Science. 2000 Feb 4;287(5454):873-80 [PMID: 10657304]
  29. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3 [PMID: 11607500]
  30. Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19 [PMID: 26615191]
  31. ISME J. 2019 May;13(5):1226-1238 [PMID: 30647457]
  32. EMBO J. 1996 Apr 1;15(7):1632-41 [PMID: 8612587]
  33. Genes Dev. 1991 Nov;5(11):1990-9 [PMID: 1657709]
  34. Nature. 2001 Dec 13;414(6865):745-8 [PMID: 11742398]
  35. Appl Environ Microbiol. 1999 Dec;65(12):5571-5 [PMID: 10584019]
  36. PLoS One. 2010 Dec 09;5(12):e15273 [PMID: 21151560]
  37. Fungal Genet Biol. 2002 Oct;37(1):72-80 [PMID: 12223191]
  38. Microbiol Mol Biol Rev. 2010 Jun;74(2):298-340 [PMID: 20508251]
  39. Mol Microbiol. 2010 Dec;78(6):1484-99 [PMID: 21143319]
  40. ISME J. 2013 Nov;7(11):2137-46 [PMID: 23823490]
  41. New Phytol. 2009 Mar;181(4):924-937 [PMID: 19140939]
  42. BMC Evol Biol. 2009 Jan 15;9:13 [PMID: 19146661]
  43. Mol Biol Evol. 2012 Oct;29(10):3215-26 [PMID: 22593224]
  44. Elife. 2018 Dec 05;7: [PMID: 30516133]
  45. Curr Biol. 2008 Nov 11;18(21):1675-9 [PMID: 18976912]
  46. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 [PMID: 24277808]
  47. Mol Cell Biol. 2008 Jul;28(14):4480-93 [PMID: 18505828]
  48. Mycorrhiza. 2016 May;26(4):325-32 [PMID: 26630971]
  49. Mycoses. 2014 Dec;57 Suppl 3:18-24 [PMID: 25175551]
  50. Genome Biol Evol. 2011;3:950-8 [PMID: 21876220]
  51. Yeast. 1997 Jul;13(9):795-807 [PMID: 9234668]
  52. Elife. 2019 Oct 25;8: [PMID: 31650958]
  53. Plant Cell. 2011 Oct;23(10):3812-23 [PMID: 21972259]
  54. Mycologia. 2016 Sep;108(5):1028-1046 [PMID: 27738200]
  55. New Phytol. 2008;178(3):672-87 [PMID: 18298433]
  56. Cell Biochem Biophys. 1999;30(2):193-212 [PMID: 10356642]
  57. New Phytol. 2014 Jan;201(1):254-268 [PMID: 24033097]
  58. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 [PMID: 28968734]
  59. Mycologia. 2008 Jan-Feb;100(1):31-46 [PMID: 18488351]
  60. Microbiol Spectr. 2017 Mar;5(2): [PMID: 28332467]
  61. Ecol Lett. 2006 Feb;9(2):103-10 [PMID: 16958874]
  62. PLoS One. 2013 Aug 07;8(8):e70633 [PMID: 23950975]
  63. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  64. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  65. Genome Biol. 2019 Nov 5;20(1):232 [PMID: 31690338]
  66. Mycorrhiza. 2019 Nov;29(6):581-589 [PMID: 31617006]
  67. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]

MeSH Term

Fungi
Glomeromycota
Mycorrhizae
Plant Roots
Reproduction
Symbiosis

Word Cloud

Created with Highcharts 10.0.0genesmatinggenotypesputativeinvolvedAMFplantspeciesknowncoexistencetwodifferentfungalhostresponsegeneticallyupregulatedobservedfungialmostcomparedcoinoculationtreatmentsisolatesRhizophagusirregularisspecificallysexualMAT-locusupregulationimportantArbuscularmycorrhizalgreatecologicalimportanceeffectsgrowthCloselyrelatedcoexistrootsHowevernothingmolecularinteractionsoccurringplantagenetranscriptionsinglesymbiosisindependentlythreecassavaRemarkablycoexistedStrikinglyidentifiablefunctionSeveralconsistentacrossgenotypeCOL2215eitherpheromonemeiosissporulationhomologsobserveexpectedhomeodomaincontainedHMG-boxsimilarMucoromycotinaFinallydemonstratedexplainednumberactivatedstudydemonstratesexperimentallyactivationrepresentssteptowardsunderstandingreproductionsymbiontsCoexistenceinduces

Similar Articles

Cited By (7)