Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms.

Hao Li, Haochen Xu, Youxiang Li, Yuhua Jiang, Yamin Hu, Tingting Liu, Xueqing Tian, Xihai Zhao, Yandong Zhu, Shuxia Wang, Chunrui Zhang, Jing Ge, Xuliang Wang, Hongyan Wen, Congxia Bai, Yingying Sun, Li Song, Yinhui Zhang, Rutai Hui, Jun Cai, Jingzhou Chen
Author Information
  1. Hao Li: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. ORCID
  2. Haochen Xu: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  3. Youxiang Li: Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
  4. Yuhua Jiang: Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
  5. Yamin Hu: Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China.
  6. Tingting Liu: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  7. Xueqing Tian: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  8. Xihai Zhao: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. ORCID
  9. Yandong Zhu: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. ORCID
  10. Shuxia Wang: Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, 100853, China.
  11. Chunrui Zhang: Novogene Bioinformatics Institute, Beijing, 100083, China.
  12. Jing Ge: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  13. Xuliang Wang: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  14. Hongyan Wen: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  15. Congxia Bai: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  16. Yingying Sun: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  17. Li Song: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  18. Yinhui Zhang: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  19. Rutai Hui: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  20. Jun Cai: Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  21. Jingzhou Chen: State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. chendragon1976@aliyun.com. ORCID

Abstract

Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Whether changes in gut microbial composition participate in the development of UIAs remains largely unknown. We perform a case-control metagenome-wide association study in two cohorts of Chinese UIA patients and control individuals and mice that receive fecal transplants from human donors. After fecal transplantation, the UIA microbiota is sufficient to induce UIAs in mice. We identify UIA-associated gut microbial species link to changes in circulating taurine. Specifically, the abundance of Hungatella hathewayi is markedly decreased and positively correlated with the circulating taurine concentration in both humans and mice. Consistently, gavage with H. hathewayi normalizes the taurine levels in serum and protects mice against the formation and rupture of intracranial aneurysms. Taurine supplementation also reverses the progression of intracranial aneurysms. Our findings provide insights into a potential role of H. hathewayi-associated taurine depletion as a key factor in the pathogenesis of UIAs.

References

  1. Vlak, M. H., Algra, A., Brandenburg, R. & Rinkel, G. J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011). [PMID: 21641282]
  2. Kassell, N. F., Torner, J. C., Jane, J. A., Haley, E. C. & Adams, H. P. The international cooperative study on the timing of aneurysm surgery. Part 2: surgical results. J. Neurosurg. 73, 37–47 (1990). [PMID: 2191091]
  3. Zhou, S., Dion, P. A. & Rouleau, G. A. Genetics of intracranial aneurysms. Stroke 49, 780–787 (2018). [PMID: 29437983]
  4. Korja, M. et al. Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke 41, 2458–2462 (2010). [PMID: 20847318]
  5. Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017). [PMID: 28143587]
  6. Cui, X. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 635 (2018). [PMID: 29330424]
  7. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017). [PMID: 29018189]
  8. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013). [PMID: 23563705]
  9. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). [PMID: 21475195]
  10. Shikata, F. et al. Potential influences of gut microbiota on the formation of intracranial aneurysm. Hypertension 73, 491–496 (2019). [PMID: 30624992]
  11. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012). [PMID: 22688413]
  12. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015). [PMID: 26418763]
  13. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015). [PMID: 25758642]
  14. Kaur, S., Yawar, M., Kumar, P. A. & Suresh, K. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 64, 710–718 (2014). [PMID: 24186873]
  15. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018). [PMID: 30377376]
  16. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med 23, 859–868 (2017). [PMID: 28628112]
  17. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). [DOI: 10.1126/science.1241214]
  18. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011). [PMID: 21765408]
  19. Chalouhi, N., Hoh, B. L. & Hasan, D. Review of cerebral aneurysm formation, growth, and rupture. Stroke 44, 3613–3622 (2013). [PMID: 24130141]
  20. Sawyer, D. M. et al. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J. Neuroinflammation 13, 185 (2016). [PMID: 27416931]
  21. Ali, M. S. et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J. Cereb. Blood Flow. Metab. 33, 1564–1573 (2013). [PMID: 23860374]
  22. Hasan, D., Chalouhi, N., Jabbour, P. & Hashimoto, T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J. Neuroinflammation 9, 222 (2012). [PMID: 22999528]
  23. Kim, S. C. et al. Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41, 642–666, discussion 646–647 (1997).
  24. Juvela, S., Hillbom, M., Numminen, H. & Koskinen, P. Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke 24, 639–646 (1993). [PMID: 8488517]
  25. Shiue, I., Arima, H., Hankey, G. J. & Anderson, C. S. Modifiable lifestyle behaviours account for most cases of subarachnoid haemorrhage: a population-based case-control study in Australasia. J. Neurol. Sci. 313, 92–94 (2012). [PMID: 21996272]
  26. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013). [PMID: 23985870]
  27. Rossi, O. et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci. Rep. 6, 18507 (2016). [PMID: 26725514]
  28. Ikedo, T. et al. Imaging mass spectroscopy delineates the thinned and thickened walls of intracranial aneurysms. Biochem. Biophys. Res. Commun. 495, 332–338 (2018). [PMID: 29111330]
  29. Menzie, J., Prentice, H. & Wu, J. Y. Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci. 3, 877–907 (2013). [PMID: 24961429]
  30. Su, Y. et al. Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience 266, 56–65 (2014). [PMID: 24530657]
  31. Jin, R., Xiao, A. Y., Liu, S., Wang, M. & Li, G. Taurine reduces tPA (tissue-type plasminogen activator)-induced hemorrhage and microvascular thrombosis after embolic stroke in rat. Stroke 49, 1708–1718 (2018). [PMID: 29844028]
  32. Kim, H. W. et al. Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. Am. J. Physiol. Heart Circ. Physiol. 313, H1168–1168H1179 (2017). [PMID: 28971841]
  33. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177(1600–1618), e17 (2019).
  34. Brown, R. D. & Broderick, J. P. Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol. 13, 393–404 (2014). [PMID: 24646873]
  35. Tang, W. H., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196 (2017). [PMID: 28360349]
  36. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009). [PMID: 19497933]
  37. Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010). [PMID: 20403810]
  38. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). [PMID: 16731699]
  39. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). [PMID: 20203603]
  40. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). [PMID: 25402007]
  41. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007). [PMID: 17255551]
  42. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–462 (2016). [PMID: 26476454]
  43. Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–293 (2016). [PMID: 26582926]
  44. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852 (2015). [PMID: 26308884]
  45. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. & UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015). [PMID: 25398609]
  46. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014). [PMID: 24997787]
  47. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). [DOI: 10.1038/nature11450]
  48. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012). [PMID: 23028285]
  49. Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016). [PMID: 26905627]
  50. Feng, Q. et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 6, 22525 (2016). [PMID: 26932197]
  51. Rabbi, M. F. et al. Human catestatin alters gut microbiota composition in mice. Front Microbiol 7, 2151 (2016). [PMID: 28144234]
  52. Wang, J. et al. Simultaneous quantification of amino metabolites in multiple metabolic pathways using ultra-high performance liquid chromatography with tandem-mass spectrometry. Sci. Rep. 7, 1423 (2017). [PMID: 28469184]
  53. Bollinger, J. G., Naika, G. S., Rohan, G., Sadilek, M. & Gelb, M. H. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res. 54, 3523–3530 (2013). [PMID: 23945566]
  54. Wang, M., Han, R. H. & Han, X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem. 85, 9312–9320 (2013). [PMID: 23971716]
  55. Emal, D. et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 28, 1450–1461 (2017). [PMID: 27927779]
  56. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018). [PMID: 30397356]
  57. Kurakawa, T. et al. Diversity of intestinal clostridium coccoides Group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PloS ONE 10, e0126226 (2015). [PMID: 26000453]
  58. Hosaka, K., Downes, D. P., Nowicki, K. W. & Hoh, B. L. Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension. J. Neurointerv Surg. 6, 474–479 (2014). [PMID: 23943816]
  59. Makino, H. et al. Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study. Stroke 43, 2450–2456 (2012). [PMID: 22798328]
  60. Ma, N., Sasoh, M., Kawanishi, S., Sugiura, H. & Piao, F. Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J. Biomed. Sci. 17(Suppl 1), S7 (2010). [PMID: 20804627]
  61. Nozawa, Y. et al. Dried bonito broth improves cognitive function via the histaminergic system in mice. Biomed. Res. 35, 311–319 (2014). [PMID: 25355438]
  62. Hussein, G. M. et al. Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: involvement of glucagon-like peptide-1. Biol. Pharm. Bull. 34, 1849–1855 (2011). [PMID: 22130241]
  63. Horvath, D. M., Murphy, R. M., Mollica, J. P., Hayes, A. & Goodman, C. A. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 48, 2635–2645 (2016). [PMID: 27444300]
  64. Shimada, K. et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture. Stroke 46, 1664–1672 (2015). [PMID: 25931465]
  65. Ashino, T., Yamamoto, M. & Numazawa, S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci. Rep. 6, 26291 (2016). [PMID: 27198574]
  66. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). [PMID: 25751142]
  67. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016). [PMID: 27560171]
  68. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). [PMID: 19910308]
  69. Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–322 (2011). [PMID: 21715386]
  70. Li, H. et al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J. Cereb. Blood Flow. Metab. 39, 547–561 (2019). [PMID: 30516406]

MeSH Term

Animals
Case-Control Studies
Clostridiaceae
Cohort Studies
Disease Progression
Fecal Microbiota Transplantation
Female
Gastrointestinal Microbiome
Humans
Intracranial Aneurysm
Male
Mice
Prognosis
Risk Factors
Taurine

Chemicals

Taurine

Links to CNCB-NGDC Resources

Word Cloud

Created with Highcharts 10.0.0intracranialmicetaurineUIAgutUIAsaneurysmschangesmicrobialfecalmicrobiotacirculatinghathewayiHprogressionUnrupturedaneurysmlife-threateningcerebrovascularconditionWhethercompositionparticipatedevelopmentremainslargelyunknownperformcase-controlmetagenome-wideassociationstudytwocohortsChinesepatientscontrolindividualsreceivetransplantshumandonorstransplantationsufficientinduceidentifyUIA-associatedspecieslinkSpecificallyabundanceHungatellamarkedlydecreasedpositivelycorrelatedconcentrationhumansConsistentlygavagenormalizeslevelsserumprotectsformationruptureTaurinesupplementationalsoreversesfindingsprovideinsightspotentialrolehathewayi-associateddepletionkeyfactorpathogenesisAlterationscontributeunruptured

Similar Articles

Cited By