A multiscale model for multiple platelet aggregation in shear flow.

Prachi Gupta, Peng Zhang, Jawaad Sheriff, Danny Bluestein, Yuefan Deng
Author Information
  1. Prachi Gupta: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA.
  2. Peng Zhang: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA.
  3. Jawaad Sheriff: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
  4. Danny Bluestein: Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
  5. Yuefan Deng: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA. Yuefan.Deng@StonyBrook.edu.

Abstract

We developed a multiscale model for simulating aggregation of multiple, free-flowing platelets in low-intermediate shear viscous flow, in which aggregation is mediated by the interaction of αβ receptors on the platelet membrane and fibrinogen (Fg). This multiscale model uses coarse grained molecular dynamics (CGMD) for platelets at the microscales and dissipative particle dynamics (DPD) for the shear flow at the macroscales, employing our hybrid aggregation force field for modeling molecular level receptor ligand bonds. We define an aggregation tensor and use it to quantify the molecular level contact characteristics between platelets in an aggregate. We perform numerical studies under different flow conditions for platelet doublets and triplets and evaluate the contact area, detaching force and minimum distance between different pairs of platelets in an aggregate. We also present the dynamics of applied stress and velocity magnitude distributions on the platelet membrane during aggregation and quantify the increase in stress in the contact region under different flow conditions. Integrating the knowledge from our previously validated models, together with new aggregation scenarios, our model can dynamically quantify aggregation characteristics and map stress and velocity distribution on the platelet membrane which are difficult to measure in vitro, thus providing an insight into mechanotransduction bond formation response of platelets to flow-induced shear stresses. This modeling framework, together with the tensor method for quantifying inter-platelet contact, can be extended to simulate and analyze larger aggregates and their adhesive properties.

Keywords

References

  1. Platelets. 1998;9(5):315-27 [PMID: 16793756]
  2. J Cell Biol. 1991 Feb;112(3):407-25 [PMID: 1991790]
  3. Eur J Cardiothorac Surg. 2004 Dec;26 Suppl 1:S19-23; discussion S23-6 [PMID: 15776844]
  4. Circulation. 1985 Apr;71(4):699-708 [PMID: 3971539]
  5. Cell Mol Bioeng. 2014 Dec 1;7(4):552-574 [PMID: 25530818]
  6. J Comput Phys. 2014 Jan 15;257(Pt A):726-736 [PMID: 24910470]
  7. Biophys J. 2008 Sep;95(5):2539-55 [PMID: 18515387]
  8. Ann Biomed Eng. 1998 Mar-Apr;26(2):268-77 [PMID: 9525767]
  9. N Engl J Med. 1970 Dec 10;283(24):1302-5 [PMID: 5478451]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):066704 [PMID: 16486095]
  11. J Thromb Haemost. 2016 May;14(5):906-17 [PMID: 26848552]
  12. Artif Organs. 2001 May;25(5):341-7 [PMID: 11403662]
  13. J Biol Chem. 2016 Apr 8;291(15):7858-67 [PMID: 26867579]
  14. J Thromb Haemost. 2009 Jul;7 Suppl 1:17-20 [PMID: 19630759]
  15. Int J Numer Method Biomed Eng. 2015 Mar;31(3):e02702 [PMID: 25532469]
  16. J Biomech. 2017 Jan 4;50:26-33 [PMID: 27894676]
  17. J Biomech. 2017 Jan 4;50:20-25 [PMID: 27887727]
  18. J Comput Phys. 2021 Feb 15;427: [PMID: 35821963]
  19. Blood Rev. 2015 Nov;29(6):377-86 [PMID: 26005062]
  20. J Chem Phys. 2009 Oct 21;131(15):154107 [PMID: 20568847]
  21. Circulation. 2019 Mar 5;139(10):e56-e528 [PMID: 30700139]
  22. Lab Chip. 2010 Apr 21;10(8):991-8 [PMID: 20358105]
  23. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17164-9 [PMID: 17085579]
  24. Blood. 2007 Jan 15;109(2):566-76 [PMID: 16990596]
  25. Nat Med. 2009 Jun;15(6):665-73 [PMID: 19465929]
  26. Ann Biomed Eng. 2013 Nov;41(11):2318-33 [PMID: 23695489]
  27. Nature. 2001 Nov 29;414(6863):503-4 [PMID: 11734837]
  28. J Atheroscler Thromb. 2016;23(4):455-64 [PMID: 26581184]
  29. Med Eng Phys. 1998 Mar;20(2):83-91 [PMID: 9679226]
  30. PLoS Comput Biol. 2017 Jan 17;13(1):e1005291 [PMID: 28095402]
  31. Biophys J. 2008 Sep;95(5):2556-74 [PMID: 18515386]
  32. Cell Mol Bioeng. 2019 Aug;12(4):327-343 [PMID: 31662802]
  33. Artif Organs. 2007 Sep;31(9):677-88 [PMID: 17725695]
  34. J Biol Chem. 1985 Sep 5;260(19):10698-707 [PMID: 2993285]
  35. Lancet. 1990 Mar 24;335(8691):711-3 [PMID: 1969070]
  36. J Biol Chem. 1992 Aug 15;267(23):16637-43 [PMID: 1644841]
  37. Biochim Biophys Acta. 2004 Nov 3;1666(1-2):142-57 [PMID: 15519313]
  38. Blood. 2007 Jun 15;109(12):5087-95 [PMID: 17311994]
  39. J Comput Phys. 2015 Mar 1;284:668-686 [PMID: 25641983]
  40. Biophys J. 2000 Mar;78(3):1195-206 [PMID: 10692309]

Grants

  1. U01 HL131052/NHLBI NIH HHS
  2. U01 HL131052-05/NIH HHS

MeSH Term

Blood Platelets
Computer Simulation
Humans
Models, Biological
Numerical Analysis, Computer-Assisted
Platelet Aggregation
Rheology
Shear Strength
Stress, Mechanical

Word Cloud

Created with Highcharts 10.0.0aggregationplateletsflowplateletmodelshearcontactmultiscalemembranemoleculardynamicsmodelingtensorquantifydifferentstressmultipleforcelevelcharacteristicsaggregateconditionsareavelocitytogethercandistributiondevelopedsimulatingfree-flowinglow-intermediateviscousmediatedinteractionαβreceptorsfibrinogenFgusescoarsegrainedCGMDmicroscalesdissipativeparticleDPDmacroscalesemployinghybridfieldreceptorligandbondsdefineuseperformnumericalstudiesdoubletstripletsevaluatedetachingminimumdistancepairsalsopresentappliedmagnitudedistributionsincreaseregionIntegratingknowledgepreviouslyvalidatedmodelsnewscenariosdynamicallymapdifficultmeasurevitrothusprovidinginsightmechanotransductionbondformationresponseflow-inducedstressesframeworkmethodquantifyinginter-plateletextendedsimulateanalyzelargeraggregatesadhesivepropertiesAggregationContactFree-flowingMultiscaleStress

Similar Articles

Cited By (6)