Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0.

Christoph A Keller, K Emma Knowland, Bryan N Duncan, Junhua Liu, Daniel C Anderson, Sampa Das, Robert A Lucchesi, Elizabeth W Lundgren, Julie M Nicely, Eric Nielsen, Lesley E Ott, Emily Saunders, Sarah A Strode, Pamela A Wales, Daniel J Jacob, Steven Pawson
Author Information
  1. Christoph A Keller: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  2. K Emma Knowland: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  3. Bryan N Duncan: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  4. Junhua Liu: NASA Goddard Space Flight Center Greenbelt MD USA.
  5. Daniel C Anderson: NASA Goddard Space Flight Center Greenbelt MD USA.
  6. Sampa Das: NASA Goddard Space Flight Center Greenbelt MD USA.
  7. Robert A Lucchesi: NASA Goddard Space Flight Center Greenbelt MD USA.
  8. Elizabeth W Lundgren: School of Engineering and Applied Sciences Harvard University Cambridge MA USA.
  9. Julie M Nicely: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  10. Eric Nielsen: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  11. Lesley E Ott: NASA Goddard Space Flight Center Greenbelt MD USA.
  12. Emily Saunders: NASA Goddard Space Flight Center Greenbelt MD USA.
  13. Sarah A Strode: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  14. Pamela A Wales: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  15. Daniel J Jacob: School of Engineering and Applied Sciences Harvard University Cambridge MA USA.
  16. Steven Pawson: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID

Abstract

The Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-resolution (0.25��) global constituent prediction system from NASA's Global Modeling and Assimilation Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to supplement NASA's broad range of space-based and in-situ observations. GEOS-CF expands on the GEOS weather and aerosol modeling system by introducing the GEOS-Chem chemistry module to provide hindcasts and 5-days forecasts of atmospheric constituents including ozone (O), carbon monoxide (CO), nitrogen dioxide (NO), sulfur dioxide (SO), and fine particulate matter (PM). The chemistry module integrated in GEOS-CF is identical to the offline GEOS-Chem model and readily benefits from the innovations provided by the GEOS-Chem community. Evaluation of GEOS-CF against satellite, ozonesonde and surface observations for years 2018-2019 show realistic simulated concentrations of O, NO, and CO, with normalized mean biases of -0.1 to 0.3, normalized root mean square errors between 0.1-0.4, and correlations between 0.3-0.8. Comparisons against surface observations highlight the successful representation of air pollutants in many regions of the world and during all seasons, yet also highlight current limitations, such as a global high bias in SO and an overprediction of summertime O over the Southeast United States. GEOS-CF v1.0 generally overestimates aerosols by 20%-50% due to known issues in GEOS-Chem v12.0.1 that have been addressed in later versions. The 5-days forecasts have skill scores comparable to the 1-day hindcast. Model skills can be improved significantly by applying a bias-correction to the surface model output using a machine-learning approach.

Keywords

References

  1. J Clim. 2017 Sep;30(17):6823-6850 [PMID: 29576684]
  2. Science. 2001 Jun 8;292(5523):1882-8 [PMID: 11337586]
  3. Atmos Environ (1994). 2020 Feb 1;222: [PMID: 33013177]
  4. J Clim. 2017 Sep 1;30(17):6851-6872 [PMID: 32908329]
  5. J Geophys Res Atmos. 2019 Jul 27;124(14):8336-8359 [PMID: 31763109]
  6. Environ Sci Technol. 1985 Sep 1;19(9):862-5 [PMID: 22196613]
  7. Nature. 2014 Sep 11;513(7517):219-23 [PMID: 25209800]
  8. Geosci Model Dev. 2018;11(1):305-319 [PMID: 30420911]
  9. Nat Commun. 2016 Nov 15;7:13444 [PMID: 27845764]
  10. J Geophys Res Atmos. 2020 Mar 16;125(5): [PMID: 33959467]
  11. Atmos Chem Phys. 2014 Mar;14(5):2679-2698 [PMID: 33758588]
  12. J Adv Model Earth Syst. 2021 Apr;13(4):e2020MS002413 [PMID: 34221240]
  13. Atmos Chem Phys. 2016 Feb;16(3):1603-1618 [PMID: 32742280]
  14. Earth Syst Sci Data. 2018;10(1):87-107 [PMID: 31662803]
  15. Environ Sci Technol. 2016 Oct 4;50(19):10739-10745 [PMID: 27611340]
  16. Atmos Chem Phys. 2016;16(21):13561-13577 [PMID: 29619045]
  17. J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454 [PMID: 32020988]
  18. Sci Total Environ. 2019 Feb 25;653:578-588 [PMID: 30759588]
  19. Environ Sci Technol. 2009 Oct 15;43(20):7614-8 [PMID: 19921869]
  20. J Adv Model Earth Syst. 2017 Dec;9(8):3019-3044 [PMID: 29497478]
  21. Science. 2000 Apr 21;288(5465):500-3 [PMID: 10775106]

Word Cloud

Created with Highcharts 10.0.0GEOS-CF0chemistryGEOS-ChemsystemglobalatmosphericobservationsOsurfaceSystemNASA'sModelingGEOSmodelingmodule5-daysforecastsCOdioxideNOSOmodelnormalizedmean1highlightairv1GoddardEarthObservingcompositionforecasthigh-resolution25��constituentpredictionGlobalAssimilationOfficeGMAOoffersnewtoolresearchgoalsupplementbroadrangespace-basedin-situexpandsweatheraerosolintroducingprovidehindcastsconstituentsincludingozonecarbonmonoxidenitrogensulfurfineparticulatematterPMintegratedidenticalofflinereadilybenefitsinnovationsprovidedcommunityEvaluationsatelliteozonesondeyears2018-2019showrealisticsimulatedconcentrationsbiases-03rootsquareerrors1-04correlations3-08Comparisonssuccessfulrepresentationpollutantsmanyregionsworldseasonsyet alsocurrentlimitationshighbiasoverpredictionsummertimeSoutheastUnitedStatesgenerallyoverestimatesaerosols20%-50%dueknownissuesv12addressedlaterversionsskillscorescomparable1-dayhindcastModelskillscanimprovedsignificantlyapplyingbias-correctionoutputusingmachine-learningapproachDescriptionNASACompositionForecastpollutionreal���timeforecasting

Similar Articles

Cited By (19)