Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells.

Jun Jin, Rujiao Li, Chunlai Jiang, Ruosi Zhang, Xiaomeng Ge, Fang Liang, Xin Sheng, Wenwen Dai, Meili Chen, Jiayan Wu, Jingfa Xiao, Weiheng Su
Author Information
  1. Jun Jin: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
  2. Rujiao Li: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  3. Chunlai Jiang: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
  4. Ruosi Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  5. Xiaomeng Ge: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  6. Fang Liang: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  7. Xin Sheng: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  8. Wenwen Dai: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
  9. Meili Chen: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  10. Jiayan Wu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  11. Jingfa Xiao: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. xiaojf@big.ac.cn.
  12. Weiheng Su: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. suweiheng@jlu.edu.cn.

Abstract

BACKGROUND: Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms, the transcriptome profile of the host cell upon CVA16 infection is still largely unknown.
RESULTS: In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis, somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms.
CONCLUSIONS: The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level, containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD induced by CVA16 infection.

Keywords

References

  1. J Gen Virol. 2008 Oct;89(Pt 10):2540-9 [PMID: 18796723]
  2. PLoS One. 2013 Jul 05;8(7):e65948 [PMID: 23861741]
  3. Bull Soc Pathol Exot. 1994;87(5):376-9 [PMID: 7496204]
  4. Emerg Infect Dis. 2011 Aug;17(8):1537-40 [PMID: 21801645]
  5. Emerg Infect Dis. 2007 Jul;13(7):1084-6 [PMID: 18214187]
  6. Nat Med. 2009 Jul;15(7):798-801 [PMID: 19543282]
  7. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2009 Oct;23(5):334-6 [PMID: 20387478]
  8. Eur J Hum Genet. 2015 May;23(5):678-87 [PMID: 25227143]
  9. Neuropathology. 2014 Oct;34(5):429-37 [PMID: 24702280]
  10. J Virol. 2013 Aug;87(16):9064-76 [PMID: 23760234]
  11. N Engl J Med. 1963 May 9;268:1041-4 [PMID: 14001956]
  12. Chronobiol Int. 1999 Jul;16(4):477-89 [PMID: 10442241]
  13. J Pathol. 2015 Jan;235(2):217-28 [PMID: 25211036]
  14. Arch Virol. 2015 Jan;160(1):173-82 [PMID: 25287131]
  15. Nat Med. 2009 Jul;15(7):794-7 [PMID: 19543284]
  16. Arch Neurol. 2003 Jan;60(1):107-12 [PMID: 12533096]
  17. PLoS One. 2014 Jan 02;9(1):e83766 [PMID: 24392094]
  18. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W451-4 [PMID: 16845047]
  19. J Infect Dis. 2012 Sep 15;206(6):881-92 [PMID: 22829643]
  20. Epigenetics. 2014 Sep;9(9):1302-16 [PMID: 25147914]
  21. Trends Cell Biol. 2003 Mar;13(3):137-45 [PMID: 12628346]
  22. Expert Rev Anti Infect Ther. 2014 Apr;12(4):447-56 [PMID: 24579906]
  23. Cardiovasc Res. 2000 May;46(2):257-63 [PMID: 10773229]
  24. Nucleic Acids Res. 2009 Jan;37(1):47-59 [PMID: 19010963]
  25. Korean J Pediatr. 2010 May;53(5):639-43 [PMID: 21189930]
  26. BMC Infect Dis. 2014 Sep 17;14:506 [PMID: 25231540]
  27. Virol J. 2010 May 12;7:94 [PMID: 20459851]
  28. J Gen Virol. 2002 Jun;83(Pt 6):1367-76 [PMID: 12029152]
  29. Emerg Infect Dis. 2009 Oct;15(10):1689-91 [PMID: 19861078]
  30. Bioinformatics. 2010 Jan 1;26(1):136-8 [PMID: 19855105]
  31. PLoS Biol. 2004 Nov;2(11):e363 [PMID: 15502875]
  32. Pathog Dis. 2013 Jul;68(2):52-60 [PMID: 23620416]
  33. Life Sci. 2005 Nov 19;78(1):82-90 [PMID: 16150462]
  34. Hum Vaccin Immunother. 2014;10(2):360-7 [PMID: 24231751]
  35. Bioinformatics. 2011 Apr 1;27(7):1011-2 [PMID: 21278192]
  36. Arch Virol. 2010 Sep;155(9):1413-24 [PMID: 20549263]
  37. Pediatr Infect Dis J. 2004 Mar;23(3):275-6 [PMID: 15014311]
  38. Can J Cardiol. 1996 Dec;12(12):1259-67 [PMID: 8987966]
  39. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  40. J Virol. 2009 Jun;83(12):6106-14 [PMID: 19339352]
  41. Virol J. 2013 Aug 06;10:250 [PMID: 23919614]
  42. Zhonghua Liu Xing Bing Xue Za Zhi. 2009 Apr;30(4):339-43 [PMID: 19731523]
  43. Pharmacol Res. 2010 Feb;61(2):142-8 [PMID: 19747544]
  44. J Infect. 2003 May;46(4):238-43 [PMID: 12799149]
  45. Am J Psychiatry. 2003 Jun;160(6):1183-5 [PMID: 12777282]

MeSH Term

Cells, Cultured
Cluster Analysis
Enterovirus
Gene Expression Profiling
Gene Expression Regulation
Gene Regulatory Networks
HEK293 Cells
High-Throughput Nucleotide Sequencing
Humans
Lysosomal Membrane Proteins
MicroRNAs
RNA, Messenger
Receptors, Scavenger
Transcriptome

Chemicals

Lysosomal Membrane Proteins
MicroRNAs
RNA, Messenger
Receptors, Scavenger
SCARB2 protein, human

Word Cloud

Created with Highcharts 10.0.0CVA16infectioncellsSCARB2expressioninfectedgenesA16EV71miRNA293TmaymiRNAspathwaysCoxsackievirustwofootmouthdiseaseHFMDtranscriptomecelluponstudycomparednon-infectedtranscriptionup-regulatedup-regulationinducedvirusesanalysisinteractioncircadianrhythmrelatedclinicalsymptomschangesregulationBACKGROUND:enterovirus71majorcauseshandworld-wideAlthoughmanystudiesfocusedpathogenicmechanismsprofilehoststilllargelyunknownRESULTS:mRNAprofileshumanembryonickidneyhighlightedcellularreceptornearly10-foldincreasepossibilitysubsequentCVA16/EV71resultingco-infectionsingleexplanationpartlyaccountco-circulationgeneticrecombinationgreatnumberBasedcorrelationspeculatedhighmodulateddown-regulationhas-miR-3605-5ptimefounddifferentiallyexpressedtargetmainlyreflectedextracellularmembraneECM-receptorpatientsaphthousulcerscoughmyocarditissomnolencepotentiallymeningoencephalitishsa-miR-149-3phsa-miR-5001-5presultmorbigenouscauseCONCLUSIONS:presentelucidatedlevelcontaininghighlyECM-receptorkeygeneresultsprovidednovelinsightpathogenesisTranscriptomerevealsdynamiccoxsackievirusHEKGeneHandRNA-seqmiRNA-seq

Similar Articles

Cited By (17)