Genomic time-series data show that gene flow maintains high genetic diversity despite substantial genetic drift in a butterfly species.

Zachariah Gompert, Amy Springer, Megan Brady, Samridhi Chaturvedi, Lauren K Lucas
Author Information
  1. Zachariah Gompert: Department of Biology, Utah State University, Logan, Utah, USA. ORCID
  2. Amy Springer: Department of Biology, Utah State University, Logan, Utah, USA.
  3. Megan Brady: Department of Biology, Utah State University, Logan, Utah, USA.
  4. Samridhi Chaturvedi: Department of Biology, Utah State University, Logan, Utah, USA. ORCID
  5. Lauren K Lucas: Department of Biology, Utah State University, Logan, Utah, USA.

Abstract

Effective population size affects the efficacy of selection, rate of evolution by drift and neutral diversity levels. When species are subdivided into multiple populations connected by gene flow, evolutionary processes can depend on global or local effective population sizes. Theory predicts that high levels of diversity might be maintained by gene flow, even very low levels of gene flow, consistent with species long-term effective population size, but tests of this idea are mostly lacking. Here, we show that Lycaeides butterfly populations maintain low contemporary (variance) effective population sizes (e.g. ~200 individuals) and thus evolve rapidly by genetic drift. However, populations harboured high levels of genetic diversity consistent with an effective population size several orders of magnitude larger. We hypothesized that the differences in the magnitude and variability of contemporary versus long-term effective population sizes were caused by gene flow of sufficient magnitude to maintain diversity but only subtly affect evolution on generational timescales. Consistent with this hypothesis, we detected low but nontrivial gene flow among populations. Furthermore, using short-term population-genomic time-series data, we documented patterns consistent with predictions from this hypothesis, including a weak but detectable excess of evolutionary change in the direction of the mean (migrant gene pool) allele frequencies across populations and consistency in the direction of allele frequency change over time. The documented decoupling of diversity levels and short-term change by drift in Lycaeides has implications for our understanding of contemporary evolution and the maintenance of genetic variation in the wild.

Keywords

Associated Data

Dryad | 10.5061/dryad.6q573n600

References

  1. Alves, J. M., Carneiro, M., Cheng, J. Y., Lemos de Matos, A., Rahman, M. M., Loog, L., Campos, P. F., Wales, N., Eriksson, A., Manica, A., Strive, T., Graham, S. C., Afonso, S., Bell, D. J., Belmont, L., Day, J. P., Fuller, S. J., Marchandeau, S., Palmer, W. J., … Jiggins, F. M. (2019). Parallel adaptation of rabbit populations to myxoma virus. Science, 363, 1319-1326. https://doi.org/10.1126/science.aau7285
  2. Anderson, J. T., Lee, C. R., Rushworth, C. A., Colautti, R. I., & Mitchell-Olds, T. (2013). Genetic trade-offs and conditional neutrality contribute to local adaptation. Molecular Ecology, 22, 699-708. https://doi.org/10.1111/j.1365-294X.2012.05522.x
  3. Balding, D. J., & Nichols, R. A. (1995). A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica, 96, 3-12. https://doi.org/10.1007/BF01441146
  4. Barrett, R. D. H., Rogers, S. M., & Schluter, D. (2008). Natural selection on a major armor gene in threespine stickleback. Science, 322, 255-257. https://doi.org/10.1126/science.1159978
  5. Bergland, A. O., Behrman, E. L., O'Brien, K. R., Schmidt, P. S., & Petrov, D. A. (2014). Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genetics, 10, e1004775. https://doi.org/10.1371/journal.pgen.1004775
  6. Bi, K. E., Linderoth, T., Singhal, S., Vanderpool, D., Patton, J. L., Nielsen, R., Moritz, C., & Good, J. M. (2019). Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genetics, 15, e1008119. https://doi.org/10.1371/journal.pgen.1008119
  7. Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H., & Neale, D. B. (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. Proceedings of National Academy of Sciences of the United States of America, 101, 15255-15260. https://doi.org/10.1073/pnas.0404231101
  8. Brüniche-Olsen, A., Austin, J. J., Jones, M. E., Holland, B. R., & Burridge, C. P. (2016). Detecting selection on temporal and spatial scales: A genomic time-series assessment of selective responses to devil facial tumor disease. PLoS One, 11, e0147875. https://doi.org/10.1371/journal.pone.0147875
  9. Brüniche-Olsen, A., Kellner, K. F., Anderson, C. J., & DeWoody, J. A. (2018). Runs of homozygosity have utility in mammalian conservation and evolutionary studies. Conservation Genetics, 19, 1295-1307. https://doi.org/10.1007/s10592-018-1099-y
  10. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001). Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press.
  11. Buffalo, V. (2021). Why do species get a thin slice of π? Revisiting Lewontin's paradox of variation. bioRxiv. https://doi.org/10.1101/2021.02.03.429633
  12. Buffalo, V., & Coop, G. (2019). The linked selection signature of rapid adaptation in temporal genomic data. Genetics, 213, 1007-1045. https://doi.org/10.1534/genetics.119.302581
  13. Buffalo, V., & Coop, G. (2020). Estimating the genome-wide contribution of selection to temporal allele frequency change. Proceedings of National Academy of Sciences of the United States of America, 117, 20672-20680. https://doi.org/10.1073/pnas.1919039117
  14. Burke, M. K., Dunham, J. P., Shahrestani, P., Thornton, K. R., Rose, M. R., & Long, A. D. (2010). Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 467, 587-590. https://doi.org/10.1038/nature09352
  15. Campbell-Staton, S. C., Cheviron, Z. A., Rochette, N., Catchen, J., Losos, J. B., & Edwards, S. V. (2017). Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science, 357, 495-498. https://doi.org/10.1126/science.aam5512
  16. Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M., & Keller, S. R. (2020). Genomic prediction of (mal) adaptation across current and future climatic landscapes. Annual Review of Ecology, Evolution, and Systematics, 51, 245-269. https://doi.org/10.1146/annurev-ecolsys-020720-042553
  17. Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10, 95-205. https://doi.org/10.1038/nrg2526
  18. Chaturvedi, S., Lucas, L. K., Buerkle, C. A., Fordyce, J. A., Forister, M. L., Nice, C. C., & Gompert, Z. (2020). Recent hybrids recapitulate ancient hybrid outcomes. Nature Communications, 11, 1-15. https://doi.org/10.1038/s41467-020-15641-x
  19. Chaturvedi, S., Lucas, L. K., Nice, C. C., Fordyce, J. A., Forister, M. L., & Gompert, Z. (2018). The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies. Molecular Ecology, 27, 2651-2666. https://doi.org/10.1111/mec.14578
  20. Coop, G. (2016). Does linked selection explain the narrow range of genetic diversity across species? bioRxiv. https://doi.org/10.1101/042598
  21. Corbett-Detig, R. B., Hartl, D. L., & Sackton, T. B. (2015). Natural selection constrains neutral diversity across a wide range of species. PLoS Biology, 13, e1002112. https://doi.org/10.1371/journal.pbio.1002112
  22. Crow, J. F., & Denniston, C. (1988). Inbreeding and variance effective population numbers. Evolution, 42, 482-495. https://doi.org/10.1111/j.1558-5646.1988.tb04154.x
  23. Do, C., Waples, R. S., Peel, D., Macbeth, G., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214.
  24. Driscoe, A. L., Nice, C. C., Busbee, R. W., Hood, G. R., Egan, S. P., & Ott, J. R. (2019). Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Molecular Ecology, 28, 4197-4211. https://doi.org/10.1111/mec.15220
  25. Egan, S. P., Ragland, G. J., Assour, L., Powell, T. H. Q., Hood, G. R., Emrich, S., Nosil, P., & Feder, J. L. (2015). Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecology Letters, 18, 817-825. https://doi.org/10.1111/ele.12460
  26. Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17, 422-433. https://doi.org/10.1038/nrg.2016.58
  27. Ellstrand, N. C. (2014). Is gene flow the most important evolutionary force in plants? American Journal of Botany, 101, 737-753.
  28. Ewens, W. (1982). On the concept of the effective population size. Theoretical Population Biology, 21, 373-378. https://doi.org/10.1016/0040-5809(82)90024-7
  29. Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R., & Weigel, D. (2019). Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 573, 126-129. https://doi.org/10.1038/s41586-019-1520-9
  30. Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. https://doi.org/10.1093/genetics/164.4.1567
  31. Feng, C., Pettersson, M., Lamichhaney, S., Rubin, C.-J., Rafati, N., Casini, M., Folkvord, A., & Andersson, L. (2017). Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. eLife, 6, e23907. https://doi.org/10.7554/eLife.23907
  32. Fisher, R. A., & Ford, E. B. (1947). The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. Heredity, 1, 143-174. https://doi.org/10.1038/hdy.1947.11
  33. Fiske, I., & Chandler, R. (2011). unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1-23.
  34. Foll, M., Shim, H., & Jensen, J. D. (2015). WFABC: A Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Molecular Ecology Resources, 15, 87-98. https://doi.org/10.1111/1755-0998.12280
  35. Ford, E. B. (1977). Ecological Genetics. Springer.
  36. Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: A review. Genetics Research, 66, 95-107. https://doi.org/10.1017/S0016672300034455
  37. Gaggiotti, O. E., & Foll, M. (2010). Quantifying population structure using the F-model. Molecular Ecology Resources, 10, 821-830. https://doi.org/10.1111/j.1755-0998.2010.02873.x
  38. Gilbert, K. J., & Whitlock, M. C. (2015). Evaluating methods for estimating local effective population size with and without migration. Evolution, 69, 2154-2166. https://doi.org/10.1111/evo.12713
  39. Gillespie, J. H. (2000). Genetic drift in an infinite population: The pseudohitchhiking model. Genetics, 155, 909-919. https://doi.org/10.1093/genetics/155.2.909
  40. Gingerich, P. D. (2019). Rates of Evolution: A Quantitative Synthesis. Cambridge University Press.
  41. Gompert, Z. (2016). Bayesian inference of selection in a heterogeneous environment from genetic time-series data. Molecular Ecology, 25, 121-134. https://doi.org/10.1111/mec.13323
  42. Gompert, Z., Comeault, A. A., Farkas, T. E. et al (2014). Experimental evidence for ecological selection on genome variation in the wild. Ecology Letters, 17, 369-379.
  43. Gompert, Z., Fordyce, J. A., Forister, M. L., Shapiro, A. M., & Nice, C. C. (2006). Homoploid hybrid speciation in an extreme habitat. Science, 314, 1923-1925. https://doi.org/10.1126/science.1135875
  44. Gompert, Z., Lucas, L. K., Buerkle, C. A., Forister, M. L., Fordyce, J. A., & Nice, C. C. (2014). Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Molecular Ecology, 23, 4555-4573.
  45. Gompert, Z., Lucas, L. K., Fordyce, J. A., Forister, M. L., & Nice, C. C. (2010). Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: Extensive introgression and a patchy hybrid zone. Molecular Ecology, 19, 3171-3192.
  46. Gompert, Z., Lucas, L. K., Nice, C. C., Fordyce, J. A., Buerkle, C. A., & Forister, M. L. (2013). Geographically multifarious phenotypic divergence during speciation. Ecology and Evolution, 3, 595-613. https://doi.org/10.1002/ece3.445
  47. Gompert, Z., Lucas, L. K., Nice, C. C., Fordyce, J. A., Forister, M. L., & Buerkle, C. A. (2012). Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution, 66, 2167-2181. https://doi.org/10.1111/j.1558-5646.2012.01587.x
  48. Gompert, Z., & Messina, F. J. (2016a). Genomic evidence that resource-based trade-offs limit host-range expansion in a seed beetle. Evolution, 70, 1249-1264.
  49. Gompert, Z., & Messina, F. J. (2016b). Genomic evidence that resource-based trade-offs limit host-range expansion in a seed beetle. Dryad, Dataset. https://doi.org/10.5061/dryad.1p0rm
  50. Graves, J. Jr, Hertweck, K., Phillips, M. et al. (2017). Genomics of parallel experimental evolution in Drosophila. Molecular Biology and Evolution, 34, 831-842.
  51. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y., Hansen, N. F., Durand, E. Y., Malaspinas, A. S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H. A., … Paabo, S. (2010). A draft sequence of the Neandertal genome. Science, 328, 710-722. https://doi.org/10.1126/science.1188021
  52. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics, 5, e1000695. https://doi.org/10.1371/journal.pgen.1000695
  53. Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations beyond the wright-fisher model. Molecular Biology and Evolution, 36, 632-637. https://doi.org/10.1093/molbev/msy228
  54. Hanski, I., Mononen, T., & Ovaskainen, O. (2011). Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation. The American Naturalist, 177, 29-43. https://doi.org/10.1086/657625
  55. Hardy, C. M., Burke, M. K., Everett, L. J., Han, M. V., Lantz, K. M., & Gibbs, A. G. (2018). Genome-wide analysis of starvation-selected Drosophila melanogaster-A genetic model of obesity. Molecular Biology and Evolution, 35, 50-65.
  56. Harris, R. B., Sackman, A., & Jensen, J. D. (2018). On the unfounded enthusiasm for soft selective sweeps II: Examining recent evidence from humans, flies, and viruses. PLoS Genetics, 14, e1007859. https://doi.org/10.1371/journal.pgen.1007859
  57. Hendry, A. P. (2016). Eco-evolutionary Dynamics. Princeton University Press.
  58. Hendry, A. P., & Kinnison, M. T. (1999). Perspective: The pace of modern life: Measuring rates of contemporary microevolution. Evolution, 1637-1653.
  59. Hey, J., & Nielsen, R. (2004). Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of drosophila pseudoobscura and d. persimilis. Genetics, 167, 747-760. https://doi.org/10.1534/genetics.103.024182
  60. Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetics Research, 38, 209-216. https://doi.org/10.1017/S0016672300020553
  61. Jorde, P. E., & Ryman, N. (1995). Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics, 139, 1077-1090. https://doi.org/10.1093/genetics/139.2.1077
  62. Jorde, P. E., & Ryman, N. (2007). Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935. https://doi.org/10.1534/genetics.107.075481
  63. Keightley, P. D., Pinharanda, A., Ness, R. W., Simpson, F., Dasmahapatra, K. K., Mallet, J., Davey, J. W., & Jiggins, C. D. (2015). Estimation of the spontaneous mutation rate in Heliconius melpomene. Molecular Biology and Evolution, 32, 239-243. https://doi.org/10.1093/molbev/msu302
  64. Kettlewell, H. D. (1958). A survey of the frequencies of Biston betularia (L.)(Lep.) and its melanic forms in Great Britain. Heredity, 12, 51-72. https://doi.org/10.1038/hdy.1958.4
  65. Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.
  66. Knutson, R. L., Kwilosz, J. R., & Grundel, R. (1999). Movement patterns and population characteristics of the Karner blue butterfly (Lycaeides melissa samuelis) at Indiana Dunes National Lakeshore. Natural Areas Journal, 19, 109-120.
  67. Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15, 1-13. https://doi.org/10.1186/s12859-014-0356-4
  68. Krimbas, C. B., & Tsakas, S. (1971). The genetics of Dacus oleae. V. Changes of esterase polymorphism in a natural population following insecticide control-selection or drift?. Evolution, 25, 454-460.
  69. Kruuk, L. E. B., Baird, S. J. E., Gale, K. S., & Barton, N. H. (1999). A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics, 153, 1959-1971. https://doi.org/10.1093/genetics/153.4.1959
  70. Lande, R. (1992). Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution, 46, 381-389. https://doi.org/10.1111/j.1558-5646.1992.tb02046.x
  71. Lanfear, R., Kokko, H., & Eyre-Walker, A. (2014). Population size and the rate of evolution. Trends in Ecology & Evolution, 29, 33-41. https://doi.org/10.1016/j.tree.2013.09.009
  72. Langmüller, A. M., & Schlötterer, C. (2020). Low concordance of short-term and long-term selection responses in experimental Drosophila populations. Molecular Ecology, 29, 3466-3475.
  73. Lawson, D. J., Van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications, 9, 1-11. https://doi.org/10.1038/s41467-018-05257-7
  74. Leffler, E. M., Bullaughey, K., Matute, D. R. et al (2012). Revisiting an old riddle: What determines genetic diversity levels within species? PLoS Biology, 10, e1001388.
  75. Lewontin, R. (1974). The Genetic Basis of Evolutionary Change. Columbia University Press.
  76. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27, 2987-2993. https://doi.org/10.1093/bioinformatics/btr509
  77. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  78. Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature, 475, 493-496. https://doi.org/10.1038/nature10231
  79. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  80. Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M., & Reimchen, T. E. (2018). Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nature Ecology & Evolution, 2, 1128-1138. https://doi.org/10.1038/s41559-018-0581-8
  81. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303. https://doi.org/10.1101/gr.107524.110
  82. Mergeay, J., & Santamaria, L. (2012). Evolution and biodiversity: The evolutionary basis of biodiversity and its potential for adaptation to global change. Evolutionary Applications, 5, 103. https://doi.org/10.1111/j.1752-4571.2011.00232.x
  83. Messer, P. W., Ellner, S. P., & Hairston, N. G. (2016). Can population genetics adapt to rapid evolution? Trends in Genetics, 32, 408-418.
  84. Mills, L. S., Bragina, E. V., Kumar, A. V., Zimova, M., Lafferty, D. J. R., Feltner, J., Davis, B. M., Hackländer, K., Alves, P. C., Good, J. M., Melo-Ferreira, J., Dietz, A., Abramov, A. V., Lopatina, N., & Fay, K. (2018). Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 359, 1033-1036. https://doi.org/10.1126/science.aan8097
  85. Morjan, C. L., & Rieseberg, L. H. (2004). How species evolve collectively: Implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology, 13, 1341-1356. https://doi.org/10.1111/j.1365-294X.2004.02164.x
  86. Mueller, L. D., Barr, L. G., & Ayala, F. J. (1985). Natural selection vs. random drift: Evidence from temporal variation in allele frequencies in nature. Genetics, 111, 517-554.
  87. Nei, M., & Graur, D. (1984). Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology, 17, 73-118.
  88. Nei, M., & Tajima, F. (1981). Genetic drift and estimation of effective population size. Genetics, 98, 625-640. https://doi.org/10.1093/genetics/98.3.625
  89. Nei, M., & Takahata, N. (1993). Effective population size, genetic diversity, and coalescence time in subdivided populations. Journal of Molecular Evolution, 37, 240-244. https://doi.org/10.1007/BF00175500
  90. Nicholson, G., Smith, A. V., Jonsson, F., Gustafsson, O., Stefansson, K., & Donnelly, P. (2002). Assessing population differentiation and isolation from single-nucleotide polymorphism data. Journal of the Royal Statistical Society Series B-Methodological, 64, 695-715. https://doi.org/10.1111/1467-9868.00357
  91. Nordborg, M., & Krone, S. (2002). Separation of time scales and convergence to the coalescent in structured populations. In M. Slatkin, & M. Veuille (Eds.), Modern Developments in Theoretical Population Genetics (pp. 194-232). Oxford University Press.
  92. Nunziata, S. O., & Weisrock, D. W. (2018). Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity, 120, 196-207. https://doi.org/10.1038/s41437-017-0037-y
  93. Oksanen, J., Blanchet, F. G., Friendly, M. et al (2020). vegan: Community Ecology Package. R package version 2.5-7.
  94. Oziolor, E. M., Reid, N. M., Yair, S., Lee, K. M., Guberman VerPloeg, S., Bruns, P. C., Shaw, J. R., Whitehead, A., & Matson, C. W. (2019). Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science, 364, 455-457. https://doi.org/10.1126/science.aav4155
  95. Pääbo, S., Poinar, H., Serre, D., Jaenicke-Després, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., & Hofreiter, M. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645-679. https://doi.org/10.1146/annurev.genet.37.110801.143214
  96. Palstra, F. P., & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 17, 3428-3447.
  97. Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de León, P., & van Herwerden, L. (2017). Genome-wide snps reveal low effective population size within confined management units of the highly vagile galapagos shark (Carcharhinus galapagensis). Conservation Genetics, 18, 1151-1163. https://doi.org/10.1007/s10592-017-0967-1
  98. Pinsky, M. L., Eikeset, A. M., Helmerson, C. et al (2021). Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 118, e2025453118.
  99. Rannala, B., & Hartigan, J. A. (1996). Estimating gene flow in island populations. Genetical Research, 67, 147-158. https://doi.org/10.1017/S0016672300033607
  100. Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237. https://doi.org/10.1046/j.1523-1739.2003.01236.x
  101. Rêgo, A., Messina, F. J., & Gompert, Z. (2019). Dynamics of genomic change during evolutionary rescue in the seed beetle Callosobruchus maculatus. Molecular Ecology, 28, 2136-2154.
  102. Royle, J. A., Dawson, D. K., & Bates, S. (2004). Modeling abundance effects in distance sampling. Ecology, 85, 1591-1597. https://doi.org/10.1890/03-3127
  103. Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9, 130-134. https://doi.org/10.1214/aos/1176345338
  104. Ryan, S. F., Deines, J. M., Scriber, J. M., Pfrender, M. E., Jones, S. E., Emrich, S. J., & Hellmann, J. J. (2018). Climate-mediated hybrid zone movement revealed with genomics, museum collection, and simulation modeling. Proceedings of the National Academy of Sciences of the United States of America, 115, E2284-E2291. https://doi.org/10.1073/pnas.1714950115
  105. Ryman, N., Laikre, L., & Hössjer, O. (2019). Do estimates of contemporary effective population size tell us what we want to know? Molecular Ecology, 28, 1904-1918.
  106. Sandoval, C. P. (1994). Differential visual predation on morphs of Timema cristinae (Phasmatodeae, Timemidae) and its consequences for host-range. Biological Journal of the Linnean Society, 52, 341-356.
  107. Scott, J. (1986). The Butterflies of North America: A Natural History and Field Guide. Stanford University Press.
  108. Scott, P. A., Allison, L. J., Field, K. J., Averill-Murray, R. C., & Shaffer, H. B. (2020). Individual heterozygosity predicts translocation success in threatened desert tortoises. Science, 370, 1086-1089. https://doi.org/10.1126/science.abb0421
  109. Serbezov, D., Jorde, P. E., Bernatchez, L., Olsen, E. M., & Vøllestad, L. A. (2012). Short-term genetic changes: Evaluating effective population size estimates in a comprehensively described brown trout (Salmo trutta) population. Genetics, 191, 579-592.
  110. Shastry, V., Adams, P. E., Lindtke, D. et al (2021). Model-based genotype and ancestry estimation for potential hybrids with mixed-ploidy. Molecular Ecology Resources, 21, 1434-1451.
  111. Sjodin, P., Kaj, I., Krone, S., Lascoux, M., & Nordborg, M. (2005). On the meaning and existence of an effective population size. Genetics, 169, 1061-1070. https://doi.org/10.1534/genetics.104.026799
  112. Slatkin, M., & Racimo, F. (2016). Ancient DNA and human history. Proceedings of the National Academy of Sciences of the United States of America, 113, 6380-6387. https://doi.org/10.1073/pnas.1524306113
  113. Soria-Carrasco, V., Gompert, Z., Comeault, A. A., Farkas, T. E., Parchman, T. L., Johnston, J. S., Buerkle, C. A., Feder, J. L., Bast, J., Schwander, T., Egan, S. P., Crespi, B. J., & Nosil, P. (2014). Stick insect genomes reveal natural selection's role in parallel speciation. Science, 344, 738-742. https://doi.org/10.1126/science.1252136
  114. Sousa, V. C., Grelaud, A., & Hey, J. (2011). On the non-identifiability of migration time estimates in isolation with migration models. Molecular Ecology, 20, 3956. https://doi.org/10.1111/j.1365-294X.2011.05247.x
  115. Speidel, L., Forest, M., Shi, S., & Myers, S. R. (2019). A method for genome-wide genealogy estimation for thousands of samples. Nature Genetics, 51, 1321-1329. https://doi.org/10.1038/s41588-019-0484-x.
  116. Stan Development Team. (2019). RStan: the R interface to Stan. R package version 2.19.2.
  117. Stan Development Team. (2021). Stan modeling language users guide and reference manual.
  118. Stern, A. J., Speidel, L., Zaitlen, N. A., & Nielsen, R. (2021). Disentangling selection on genetically correlated polygenic traits via whole-genome genealogies. The American Journal of Human Genetics, 108, 219-239. https://doi.org/10.1016/j.ajhg.2020.12.005
  119. Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences of the United States of America, 118, e2015096118.
  120. Turner, T. L., Stewart, A. D., Fields, A. T., Rice, W. R., & Tarone, A. M. (2011). Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in drosophila melanogaster. PLoS Genetics, 7, e1001336. https://doi.org/10.1371/journal.pgen.1001336
  121. U.S. Fish and Wildlife Service. (2003). Karner Blue Butterfly (Lycaeides melissa samuelis) Recovery Plan. Tech. rep., Region 3, U.S. Fish and Wildlife Service, Fort Snelling, Minnesota.
  122. Wakeley, J., & Sargsyan, O. (2009). Extensions of the coalescent effective population size. Genetics, 181, 341-345. https://doi.org/10.1534/genetics.108.092460
  123. Walsh, B., & Lynch, M. (2018). Evolution and Selection of Quantitative Traits. Oxford University Press.
  124. Wang, J., Santiago, E., & Caballero, A. (2016). Prediction and estimation of effective population size. Heredity, 117, 193-206. https://doi.org/10.1038/hdy.2016.43
  125. Wang, J., & Whitlock, M. C. (2003). Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446. https://doi.org/10.1093/genetics/163.1.429
  126. Wang, X., Bernhardsson, C., & Ingvarsson, P. K. (2020). Demography and natural selection have shaped genetic variation in the widely distributed conifer Norway spruce (Picea abies). Genome Biology and Evolution, 12, 3803-3817. https://doi.org/10.1093/gbe/evaa005
  127. Waples, R. S. (1989). A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391. https://doi.org/10.1093/genetics/121.2.379
  128. Wernberg, T., Coleman, M. A., Bennett, S., Thomsen, M. S., Tuya, F., & Kelaher, B. P. (2018). Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports, 8, 1-8. https://doi.org/10.1038/s41598-018-20009-9
  129. Whitlock, M. C., & Barton, N. H. (1997). The effective size of a subdivided population. Genetics, 146, 427-441. https://doi.org/10.1093/genetics/146.1.427
  130. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97-159. https://doi.org/10.1093/genetics/16.2.97
  131. Wright, S. (1948). On the roles of directed and random changes in gene frequency in the genetics of populations. Evolution, 2, 279-294. https://doi.org/10.1111/j.1558-5646.1948.tb02746.x
  132. Yang, M., He, Z., Shi, S., & Wu, C. I. (2017). Can genomic data alone tell us whether speciation happened with gene flow? Molecular Ecology, 26, 2845-2849.

MeSH Term

Animals
Butterflies
Gene Flow
Genetic Drift
Genetic Variation
Genetics, Population
Genomics
Humans

Word Cloud

Created with Highcharts 10.0.0genepopulationflowdiversityeffectivegeneticdriftlevelspopulationssizeevolutionspeciessizeshighlowconsistentLycaeidescontemporarymagnitudechangeevolutionarylong-termshowbutterflymaintainhypothesisshort-termtime-seriesdatadocumenteddirectionalleletimeEffectiveaffectsefficacyselectionrateneutralsubdividedmultipleconnectedprocessescandependgloballocalTheorypredictsmightmaintainedeventestsideamostlylackingvarianceeg~200individualsthusevolverapidlyHoweverharbouredseveralorderslargerhypothesizeddifferencesvariabilityversuscausedsufficientsubtlyaffectgenerationaltimescalesConsistentdetectednontrivialamongFurthermoreusingpopulation-genomicpatternspredictionsincludingweakdetectableexcessmeanmigrantpoolfrequenciesacrossconsistencyfrequencydecouplingimplicationsunderstandingmaintenancevariationwildGenomicmaintainsdespitesubstantialpopulation-geneticseries

Similar Articles

Cited By (7)