IQGAP1 is a key node within the small GTPase network.

Guillaume Jacquemet, Martin J Humphries
Author Information
  1. Guillaume Jacquemet: Wellcome Trust Centre for Cell-Matrix Research; Faculty of Life Sciences; University of Manchester; Manchester, UK.
  2. Martin J Humphries: Wellcome Trust Centre for Cell-Matrix Research; Faculty of Life Sciences; University of Manchester; Manchester, UK.

Abstract

Coordination of the activity of multiple small GTPases is required for the regulation of many physiological processes, including cell migration. There are now several examples of functional interplay between small GTPase pairs, but the mechanisms that control GTPase activity in time and space are only partially understood. Here, we build on the hypothesis that small GTPases are part of a large, integrated network and propose that key proteins within this network integrate multiple signaling events and coordinate multiple small GTPase activities. Specifically, we identify the scaffolding protein IQGAP1 as a master regulator of multiple small GTPases, including Cdc42, Rac1, Rap1, and RhoA. In addition, we demonstrate that IQGAP1 promotes Arf6 activation downstream of β1 integrin engagement. Furthermore, following literature-curated searches and recent mass spectrometric analysis of IQGAP1-binding partners, we report that IQGAP1 recruits other small GTPases, including RhoC, Rac2, M-Ras, RhoQ, Rab10, and Rab5, small GTPase regulators, including Tiam1, RacGAP1, srGAP2 and HERC1, and small GTPase effectors, including PAK6, N-WASP, several sub-units of the Arp2/3 complex and the formin mDia1. Therefore, we propose that IQGAP1 acts as a small GTPase scaffolding platform within the small GTPase network, and recruits and/or regulates small GTPases, small GTPase regulators and effectors to orchestrate cell behavior. Finally, to identify other putative key regulators of small GTPase crosstalk, we have assembled a small GTPase network using protein-protein interaction databases.

Keywords

References

  1. PLoS One. 2012;7(9):e44882 [PMID: 23028658]
  2. PLoS One. 2010 Nov 15;5(11):e13984 [PMID: 21085593]
  3. J Proteome Res. 2007 Feb;6(2):744-50 [PMID: 17269730]
  4. J Cell Sci. 2006 Dec 1;119(Pt 23):4866-77 [PMID: 17105768]
  5. J Cell Biol. 2008 Jun 16;181(6):985-98 [PMID: 18541705]
  6. Curr Opin Cell Biol. 2013 Oct;25(5):627-32 [PMID: 23797030]
  7. J Cell Sci. 2005 Mar 1;118(Pt 5):843-6 [PMID: 15731001]
  8. Sci Signal. 2009 Sep 08;2(87):ra51 [PMID: 19738201]
  9. Proteomics. 2004 Dec;4(12):3845-54 [PMID: 15540166]
  10. Cell. 2002 Jun 28;109(7):873-85 [PMID: 12110184]
  11. Nature. 2009 Sep 3;461(7260):99-103 [PMID: 19693013]
  12. Oncogene. 1997 Jul 3;15(1):1-6 [PMID: 9233772]
  13. Bioinformatics. 2011 Feb 1;27(3):431-2 [PMID: 21149340]
  14. Small GTPases. 2012 Apr-Jun;3(2):80-90 [PMID: 22790194]
  15. Nat Rev Mol Cell Biol. 2008 Sep;9(9):690-701 [PMID: 18719708]
  16. FEBS Lett. 2009 Jun 18;583(12):1817-24 [PMID: 19433088]
  17. EMBO J. 2005 Oct 5;24(19):3389-99 [PMID: 16148947]
  18. Curr Biol. 1998 Oct 22;8(21):1151-60 [PMID: 9799731]
  19. Mol Syst Biol. 2007;3:89 [PMID: 17353931]
  20. FEBS Lett. 2005 Jan 17;579(2):343-8 [PMID: 15642342]
  21. EMBO Rep. 2011 Mar;12(3):259-66 [PMID: 21311561]
  22. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  23. Science. 1998 Aug 7;281(5378):832-5 [PMID: 9694656]
  24. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  25. J Biol Chem. 1999 Jan 1;274(1):464-70 [PMID: 9867866]
  26. Dev Cell. 2010 Oct 19;19(4):574-88 [PMID: 20951348]
  27. Nucleic Acids Res. 2010 Jan;38(Database issue):D736-42 [PMID: 19906717]
  28. EMBO J. 1996 Aug 15;15(16):4262-73 [PMID: 8861955]
  29. J Biol Chem. 2007 Jul 13;282(28):20752-62 [PMID: 17517894]
  30. Physiol Rev. 2013 Jan;93(1):269-309 [PMID: 23303910]
  31. J Cell Biol. 2012 Sep 3;198(5):865-80 [PMID: 22945935]
  32. Nat Methods. 2009 Jan;6(1):75-7 [PMID: 19079255]
  33. J Biol Chem. 1997 Nov 21;272(47):29579-83 [PMID: 9368021]
  34. Cancer Res. 2009 Feb 1;69(3):794-801 [PMID: 19155310]
  35. J Cell Biol. 2005 Jan 17;168(2):221-32 [PMID: 15642749]
  36. Nat Cell Biol. 2012 Aug;14(8):818-828 [PMID: 22750944]
  37. J Cell Sci. 2007 Feb 15;120(Pt 4):658-69 [PMID: 17264147]
  38. Nat Med. 2013 May;19(5):626-630 [PMID: 23603816]
  39. Nat Cell Biol. 2011 Apr;13(4):383-93 [PMID: 21423176]
  40. J Cell Sci. 2013 Sep 15;126(Pt 18):4121-35 [PMID: 23843620]
  41. Annu Rev Cell Dev Biol. 2005;21:247-69 [PMID: 16212495]
  42. Trends Cell Biol. 2006 May;16(5):242-9 [PMID: 16595175]
  43. Science. 2003 Dec 5;302(5651):1704-9 [PMID: 14657486]
  44. Cell Signal. 2012 Apr;24(4):826-34 [PMID: 22182509]
  45. J Biol Chem. 2009 May 29;284(22):15339-52 [PMID: 19366706]
  46. J Biol Chem. 2012 Nov 2;287(45):38367-78 [PMID: 22992742]
  47. Prostate. 2008 Oct 1;68(14):1510-6 [PMID: 18642328]
  48. Cell Adh Migr. 2011 Mar-Apr;5(2):170-80 [PMID: 21178402]
  49. Semin Cell Dev Biol. 2011 Feb;22(1):39-47 [PMID: 20837153]
  50. Nat Cell Biol. 2007 Aug;9(8):858-67 [PMID: 17671451]
  51. Cell Res. 2012 Oct;22(10):1479-501 [PMID: 22825554]
  52. Cell Signal. 2009 Oct;21(10):1471-8 [PMID: 19269319]
  53. J Cell Biol. 2013 Sep 16;202(6):917-35 [PMID: 24019536]
  54. J Cell Sci. 2010 May 1;123(Pt 9):1385-8 [PMID: 20410370]
  55. Nat Cell Biol. 2002 Dec;4(12):970-5 [PMID: 12447388]
  56. Dev Cell. 2013 Mar 11;24(5):472-85 [PMID: 23453597]
  57. EMBO J. 2013 Oct 2;32(19):2617-30 [PMID: 23982733]
  58. Curr Biol. 2010 Feb 9;20(3):198-208 [PMID: 20116244]
  59. J Biol Chem. 2003 Oct 17;278(42):41237-45 [PMID: 12900413]
  60. Mol Med Rep. 2011 Jul-Aug;4(4):697-703 [PMID: 21537845]
  61. Trends Cell Biol. 2011 Dec;21(12):718-26 [PMID: 21924908]
  62. EMBO J. 1996 Jun 17;15(12):2997-3005 [PMID: 8670801]
  63. J Cell Biol. 2007 Jul 16;178(2):193-200 [PMID: 17620407]
  64. J Cell Sci. 2010 Jun 1;123(Pt 11):1841-50 [PMID: 20484664]
  65. Cell. 2009 Sep 4;138(5):990-1004 [PMID: 19737524]
  66. J Biol Chem. 2007 Jan 5;282(1):426-35 [PMID: 17085436]
  67. Nat Cell Biol. 2005 Apr;7(4):343-52 [PMID: 15793570]

Grants

  1. 092015/Wellcome Trust

MeSH Term

ADP-Ribosylation Factor 6
ADP-Ribosylation Factors
Animals
Cells, Cultured
Fibroblasts
Mice
Monomeric GTP-Binding Proteins
Protein Interaction Mapping
Signal Transduction
rac1 GTP-Binding Protein
ras GTPase-Activating Proteins

Chemicals

ADP-Ribosylation Factor 6
IQ motif containing GTPase activating protein 1
ras GTPase-Activating Proteins
ADP-Ribosylation Factors
Arf6 protein, mouse
Monomeric GTP-Binding Proteins
rac1 GTP-Binding Protein

Word Cloud

Created with Highcharts 10.0.0smallGTPaseGTPasesnetworkIQGAP1includingmultiplekeywithinregulatorsactivitycellseveralproposeidentifyscaffoldingrecruitseffectorscrosstalkCoordinationrequiredregulationmanyphysiologicalprocessesmigrationnowexamplesfunctionalinterplaypairsmechanismscontroltimespacepartiallyunderstoodbuildhypothesispartlargeintegratedproteinsintegratesignalingeventscoordinateactivitiesSpecificallyproteinmasterregulatorCdc42Rac1Rap1RhoAadditiondemonstratepromotesArf6activationdownstreamβ1integrinengagementFurthermorefollowingliterature-curatedsearchesrecentmassspectrometricanalysisIQGAP1-bindingpartnersreportRhoCRac2M-RasRhoQRab10Rab5Tiam1RacGAP1srGAP2HERC1PAK6N-WASPsub-unitsArp2/3complexforminmDia1Thereforeactsplatformand/orregulatesorchestratebehaviorFinallyputativeassembledusingprotein-proteininteractiondatabasesnodeRassignaltransduction

Similar Articles

Cited By (21)