Home
Category
Visualization
BarBoxComutationDotForestHeatmapHistogramLollipopMafsummaryMaftitvManhattanOncoprintPM-AdiversityPM-comp-corPM-comp-funcPM-comp-taxaPM-DistributionPM-HclusterPM-HeatmapPM-Marker-CorrPM-Marker-RFscorePM-Marker-TestPM-NetworkPM-PcaPM-PcoaPM-plot-taxaPM-rare-curvQ-QSurvivalUpsetVenn
Sequence alignment
BLASTDotmatcherDotpathDottupNeedlePM-BdiversityPM-extract-rnaPM-parallel-metaPolydotWater
RNA Expression
Bulk RNA-seq Data AnalysisCancer Alternative Splicing AnalysisCCLHunterCIRI-deepCIRI3Cross-disease analysisDisease predictionEditing site annotationEditing site identificationEditingFactorDetectorFunGenGene-disease network constructionNCSelPredRNA-seq AnalysisSingle-cell RNA-seq Data AnalysisSPIRALTIVar diffTIVar predictVisualization of scRNA-seq Data Analysis Results
Variome analysis
BarcodeBLASTBarcodeFindereasyGWASExpPatternGeneFinderHaplotype analysisHapMapHapSnapLeadSNPFinderRice Varieties IdentificationRice Yield EstimationSeqFetchVersionMapWheat Head Estimation
Epigenome analysis
Age PredictorBS-RNAComparative analysis in nucleosomesDMR AnnotationDMR ToolkitEnrichment & AnnotationEnrichment analysis in nucleosome occupancyEWAS Network VisualizationGMQNIDMPLollipop PlotterMRAS
Long non-coding RNA
ClassificationFunctional PredictionID conversionLGClncbook-BLASTLncBot
Virus
COVID-19 genome variation annotationCOVID-19 haplotype analysisDenovo AssemblyEvolutionary treeFastq-to-VariantsGenealogy and Evolutionary AnalysisGenome AnnotationGenome TracingMcANMonkeypox virus genome variation annotationMonkeypox virus genome variation identificationPangolin COVID-19 Lineage AssignerSeqQCVENASVISTA
Single-cell omics
BroCOLICell Type ComparatorCell Type PredictorFGOTGOTSCSESSpaMITACOSUCASpatial
Image Processing
Image CroppingImage DenoisingImage FlippingImage PartitioningImage Resizing
Others
APAcatcherComposition analysisCross-model analysisCross-species analysisCross-stages analysisHomolog FinderLUTLSRSMEFEMIAMT-trackerncRNA-eQTLPM-parse-mipPM-predict-funcPM-predict-func-contributePM-predict-func-nstiPM-rand-rarePM-select-funcPM-select-taxaPM-split-seqTaxaCal
User Manual
Visualization
BarBoxComutationDotForestHeatmapHistogramLollipopMafsummaryMaftitvManhattanOncoprintPM-AdiversityPM-comp-corPM-comp-funcPM-comp-taxaPM-DistributionPM-HclusterPM-HeatmapPM-Marker-CorrPM-Marker-RFscorePM-Marker-TestPM-NetworkPM-PcaPM-PcoaPM-plot-taxaPM-rare-curvQ-QSurvivalUpsetVenn
Home Visualization
PM-Marker-Corr
Program
PM-Marker-Corr
PM-Marker-Corr

Data

Data(adb)
Example file
Meta(txt)
Example file

Parameters

References
Yuzhu Chen JL, Yufeng Zhang, Mingqian Zhang, Zheng Sun, Gongchao Jing, Shi Huang , Xiaoquan Su. Parallel-Meta Suite: interactive and rapid microbiome data analysis on multiple platforms. 2022.
https://github.com/qdu-bioinfo/parallel-meta-suite
Instructions

Candidate biomarker selection by regression

Calculate the correlation coefficient and P value between the feature table and the numerical data in the metadata. The calculated correlation coefficient and adjusted P-value are then saved to a file and the features are sorted by correlation strength. For each metadata variable, a scatterplot PDF containing significantly correlated features is generated. The graph shows the correlation coefficient, P value, and fitted regression line.

Contributor(s)
XiaoQuan Su
suxq@qdu.edu.cn
#Runs
23
Open Result