Home
Category
Visualization
BarBoxComutationDotForestHeatmapHistogramLollipopMafsummaryMaftitvManhattanOncoprintPM-AdiversityPM-comp-corPM-comp-funcPM-comp-taxaPM-DistributionPM-HclusterPM-HeatmapPM-Marker-CorrPM-Marker-RFscorePM-Marker-TestPM-NetworkPM-PcaPM-PcoaPM-plot-taxaQ-QSurvivalUpsetVenn
Sequence alignment
BLASTDotmatcherDotpathDottupNeedlePM-BdiversityPM-extract-rnaPM-parallel-metaPolydotWater
RNA Expression
Bulk RNA-seq Data AnalysisCancer Alternative Splicing AnalysisCCLHunterCIRI-deepCIRI3Cross-disease analysisDisease predictionEditing site annotationEditing site identificationEditingFactorDetectorFunGenGene-disease network constructionNCSelPredRNA-seq AnalysisSingle-cell RNA-seq Data AnalysisSPIRALTIVar diffTIVar predictVisualization of scRNA-seq Data Analysis Results
Variome analysis
BarcodeBLASTBarcodeFindereasyGWASExpPatternGeneFinderHaplotype analysisHapMapHapSnapLeadSNPFinderRice Varieties IdentificationRice Yield EstimationSeqFetchVersionMapWheat Head Estimation
Epigenome analysis
Age PredictorBS-RNAComparative analysis in nucleosomesDMR AnnotationDMR ToolkitEnrichment & AnnotationEnrichment analysis in nucleosome occupancyEWAS Network VisualizationGMQNIDMPLollipop PlotterMRAS
Long non-coding RNA
ClassificationFunctional PredictionID conversionLGClncbook-BLASTLncBot
Virus
COVID-19 genome variation annotationCOVID-19 haplotype analysisDenovo AssemblyEvolutionary treeFastq-to-VariantsGenealogy and Evolutionary AnalysisGenome AnnotationGenome TracingMcANMonkeypox virus genome variation annotationMonkeypox virus genome variation identificationPangolin COVID-19 Lineage AssignerSeqQCVENASVISTA
Single-cell omics
BroCOLICell Type ComparatorCell Type PredictorFGOTGOTSCSESSpaMITACOSUCASpatial
Image Processing
Image CroppingImage DenoisingImage FlippingImage PartitioningImage Resizing
Others
APAcatcherComposition analysisCross-model analysisCross-species analysisCross-stages analysisHomolog FinderLUTLSRSMIAncRNA-eQTLPM-predict-func
User Manual
Visualization
BarBoxComutationDotForestHeatmapHistogramLollipopMafsummaryMaftitvManhattanOncoprintPM-AdiversityPM-comp-corPM-comp-funcPM-comp-taxaPM-DistributionPM-HclusterPM-HeatmapPM-Marker-CorrPM-Marker-RFscorePM-Marker-TestPM-NetworkPM-PcaPM-PcoaPM-plot-taxaQ-QSurvivalUpsetVenn
Home Visualization
PM-Network
program
PM-Network
PM-Network

Data

Data(out)
Example file

Parameters

true
True
False
true
True
False
References
Yuzhu Chen JL, Yufeng Zhang, Mingqian Zhang, Zheng Sun, Gongchao Jing, Shi Huang , Xiaoquan Su. Parallel-Meta Suite: interactive and rapid microbiome data analysis on multiple platforms. 2022.
https://github.com/qdu-bioinfo/parallel-meta-suite
Instructions

Co-occurrence network mapping using correlations among community members

Read the distance matrix file and construct an undirected graph based on the set threshold and positive and negative edge parameters. Then set the color and weight of the edges in the graph. Positive edges are green, negative edges are red, and based on the absolute value of the correlation coefficient Determine the edge weight. Calculate and visualize various statistical indicators of the network, such as the number of nodes, number of connected components, number of positive and negative edges, network density, diameter, radius and centralization index. The network is laid out using the Fruchterman-Reingold algorithm, and the statistical summary information of the network is used as the title of the figure. Export the network diagram to a PDF file, and indicate the colors of the positive and negative edges in the legend.

Contributor(s)
XiaoQuan Su
suxq@qdu.edu.cn
#Runs
78
Open Result