Home
Category
Visualization
BarBoxComutationDotForestHeatmapHistogramLollipopMafsummaryMaftitvManhattanOncoprintPM-AdiversityPM-comp-corPM-comp-funcPM-comp-taxaPM-DistributionPM-HclusterPM-HeatmapPM-Marker-CorrPM-Marker-RFscorePM-Marker-TestPM-NetworkPM-PcaPM-PcoaPM-plot-taxaQ-QSurvivalUpsetVenn
Sequence alignment
BLASTDotmatcherDotpathDottupNeedlePM-BdiversityPM-extract-rnaPM-parallel-metaPolydotWater
RNA Expression
Bulk RNA-seq Data AnalysisCancer Alternative Splicing AnalysisCCLHunterCIRI-deepCIRI3Cross-disease analysisDisease predictionEditing site annotationEditing site identificationEditingFactorDetectorFunGenGene-disease network constructionNCSelPredRNA-seq AnalysisSingle-cell RNA-seq Data AnalysisSPIRALTIVar diffTIVar predictVisualization of scRNA-seq Data Analysis Results
Variome analysis
BarcodeBLASTBarcodeFindereasyGWASExpPatternGeneFinderHaplotype analysisHapMapHapSnapLeadSNPFinderRice Varieties IdentificationRice Yield EstimationSeqFetchVersionMapWheat Head Estimation
Epigenome analysis
Age PredictorBS-RNAComparative analysis in nucleosomesDMR AnnotationDMR ToolkitEnrichment & AnnotationEnrichment analysis in nucleosome occupancyEWAS Network VisualizationGMQNIDMPLollipop PlotterMRAS
Long non-coding RNA
ClassificationFunctional PredictionID conversionLGClncbook-BLASTLncBot
Virus
COVID-19 genome variation annotationCOVID-19 haplotype analysisDenovo AssemblyEvolutionary treeFastq-to-VariantsGenealogy and Evolutionary AnalysisGenome AnnotationGenome TracingMcANMonkeypox virus genome variation annotationMonkeypox virus genome variation identificationPangolin COVID-19 Lineage AssignerSeqQCVENASVISTA
Single-cell omics
BroCOLICell Type ComparatorCell Type PredictorFGOTGOTSCSESSpaMITACOSUCASpatial
Image Processing
Image CroppingImage DenoisingImage FlippingImage PartitioningImage Resizing
Others
APAcatcherComposition analysisCross-model analysisCross-species analysisCross-stages analysisHomolog FinderLUTLSRSMIAncRNA-eQTLPM-predict-func
User Manual
RNA Expression
Bulk RNA-seq Data AnalysisCancer Alternative Splicing AnalysisCCLHunterCIRI-deepCIRI3Cross-disease analysisDisease predictionEditing site annotationEditing site identificationEditingFactorDetectorFunGenGene-disease network constructionNCSelPredRNA-seq AnalysisSingle-cell RNA-seq Data AnalysisSPIRALTIVar diffTIVar predictVisualization of scRNA-seq Data Analysis Results
Home RNA Expression
FunGen
program
FunGen
FunGen

Data

Fastq File
Example file

Parameters

References
Zhang, W., Li, X.J., Liu, F. et al. Fungen: clustering and correcting long-read metatranscriptomic data for exploring eukaryotic microorganisms. Sci. China Life Sci. (2025). https://doi.org/10.1007/s11427-024-2853-x
Instructions

Fungen is a reference-free tool to construct accurate transcripts using long-read metatranscriptomic data through read clustering and error correction.

 
1. FunGen:
FunGen (Fungal Gene) is a reference-free tool to construct accurate transcripts using long-read metatranscriptomic data through read clustering and error correction. It is consists of two main stages: (1) clustering error-prone long reads that are potentially from the same gene and (2) performing error correction within each cluster. The local software can be installed through https://github.com/gyjames/Fungen
2. Online software usage:
Data: ·Either upload the metatranscriptome Fastq file (uncompressed or .gz), ·Or paste raw sequences directly into the text box. Parameter: ·Threads: Number of CPU threads to use for read clustering. More threads speed up clustering at the cost of higher CPU usage. Default 10. ·Minimum length: After homopolymer compression, reads shorter than this (in bases) are discarded before clustering. Default 30. ·Minimizer size: Length of k‑mer used for computing minimizers. A minimizer is the lexicographically smallest k‑mer within a sliding window of the read. Default 11. ·Window size: Length of the sliding window (in compressed‑read bases) over which you select one minimizer. Larger windows yield fewer minimizers per read. Default 20. ·Chunk: Number of reads per chunk when splitting the input for batch‐wise clustering. Smaller chunks reduce peak memory but may increase total runtime. Default 10000. Output: ·cluster_results.txt: The final clustering results ·cluster_represents.fasta: Reference sequences for gene clusters ·corrected_seqs.fastq: Corrected reads

Contributor(s)
Weiwei Zhang,Xiang Li,Fang Liu
zhangww@big.ac.cn,lixiang@big.ac.cn,liufang@im.ac.cn
#Runs
38
Open Result